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Abstract.  A conceptual graph (CG) is a graph representation for logic based on the semantic networks 
of artificial intelligence and the existential graphs of Charles Sanders Peirce.  Several versions of CGs 
have been designed and implemented over the past thirty years. The simplest are the typeless core CGs, 
which correspond to Peirce’s original existential graphs.  More common are the extended CGs, which 
are a typed superset of the core.  The research CGs have explored novel techniques for reasoning, 
knowledge representation, and natural language semantics.  The semantics of the core and extended 
CGs is defined by a formal mapping to and from ISO standard 24707 for Common Logic, but the 
research CGs are defined by a variety of formal and informal extensions.  This article surveys the 
notation, applications, and reasoning methods used with CGs and their mapping to and from other 
versions of logic.

This is a preprint of Chapter 5 of the Handbook of Knowledge Representation, ed. by F. van Harmelen, 
V. Lifschitz, and B. Porter, Elsevier, 2008, pp. 213−237.  It has been updated with some recent 
references and an Appendix with the CGIF grammar. 

1. From Existential Graphs to Conceptual Graphs
During the 1960s, graph-based semantic representations were popular in both theoretical and 
computational linguistics. At one of the most impressive conferences of the decade, Margaret 
Masterman (1961) introduced a graph-based notation, called a semantic network, which included a 
lattice of concept types; Silvio Ceccato presented correlational nets, which were based on 56 different 
relations, including subtype, instance, part-whole, case relations, kinship relations, and various kinds of 
attributes; and David Hays presented dependency graphs, which formalized the notation developed by 
the linguist Lucien Tesnière (1959). The early graph notations represented the relational structures 
underlying natural language semantics, but none of them could express full first-order logic. Woods 
(1975) and McDermott (1976) wrote scathing critiques of their logical weaknesses. 

In the late 1970s, many graph notations were designed to represent first-order logic or a formally-
defined subset (Findler 1979). Sowa (1976) developed a version of conceptual graphs (CGs) as an 
intermediate language for mapping natural language questions and assertions to a relational database. 
Figure 1 shows a CG for the sentence John is going to Boston by bus. The rectangles are called 
concepts, and the circles are called conceptual relations. An arc pointing toward a circle marks the first 
argument of the relation, and an arc pointing away from a circle marks the last argument. If a relation 
has only one argument, the arrowhead is omitted. If a relation has more than two arguments, the 
arrowheads are replaced by integers 1,...,n. 



 

Figure 1:  CG display form for John is going to Boston by bus. 
The conceptual graph in Figure 1 represents a typed or sorted version of logic. Each of the four 
concepts has a type label, which represents the type of entity the concept refers to:  Person, Go, 
Boston, or Bus. Two of the concepts have names, which identify the referent:  John or Boston. 
Each of the three conceptual relations has a type label that represents the type of relation:  agent 
(Agnt), destination (Dest), or instrument (Inst). The CG as a whole indicates that the person John 
is the agent of some instance of going, the city Boston is the destination, and a bus is the instrument. 
Figure 1 can be translated to the following formula: 

(∃x)(∃y)(Go(x)  Person(John)  City(Boston)  Bus(∧ ∧ ∧ y) 
       Agnt(∧ x,John)  Dest(∧ x,Boston)  Inst(∧ x,y)) 

As this translation shows, the only logical operators used in Figure 1 are conjunction and the existential 
quantifier. Those two operators are the most common in translations from natural languages, and many 
of the early semantic networks could not represent any others. 

For his pioneering Begriffsschrift (concept writing), Frege (1979) adopted a tree notation for 
representing full first-order logic, using only four operators:  assertion (the “turnstile” operator ), 
negation (a short vertical line), implication (a hook), and the universal quantifier (a cup containing the 
bound variable). Figure 2 shows the Begriffsschrift equivalent of Figure 1, and following is its 
translation to predicate calculus: 

~(∀x)(∀y)(Go(x)  (Person(John)  (City(Boston)  (Bus(⊃ ⊃ ⊃ y)  ⊃
      (Agnt(x,John)  (Dest(⊃ x,Boston)  ~Inst(⊃ x,y))))))) 

Frege’s choice of operators simplified his rules of inference, but they lead to awkward paraphrases:  It  
is false that for every x and y, if x is an instance of going then if John is a person then if Boston is a city  
then if y is a bus then if the agent of x is John then if the destination of x is Boston then the instrument  
of x is not y. 



 

Figure 2:  Frege’s Begriffsschrift for John is going to Boston by bus. 
Unlike Frege, who rejected Boolean algebra, Peirce developed the algebraic notation for first-order 
logic as a generalization of the Boolean operators. Since Boole treated disjunction as logical addition 
and conjunction as logical multiplication, Peirce (1880) represented the existential quantifier by Σ for 
repeated disjunction and the universal quantifier by Π for repeated conjunction. In the notation of 
Peirce (1885), Figure 1 could be represented 

ΣxΣy (Go(x) • Person(John) • City(Boston) • Bus(y) • 
      Agnt(x,John) • Dest(x,Boston) • Inst(x,y)) 

Peano adopted Peirce’s notation, but he invented new symbols because he wanted to mix mathematical 
and logical symbols in the same formulas. Meanwhile, Peirce began to experiment with relational  
graphs for representing logic, as in Figure 3. In that graph, an existential quantifier is represented by a 
line of identity, and conjunction is the default Boolean operator. Since Peirce’s graphs did not 
distinguish proper names, the monadic predicates isJohn and isBoston may be used to represent names. 
Following is the algebraic notation for Figure 3: 

ΣxΣyΣzΣw (Go(x) • Person(y) • isJohn(y) • City(z) • isBoston(z) • Bus(w) • 
      Agnt(x,y) • Dest(x,z) • Inst(x,w)) 

 

Figure 3:  Peirce’s relational graph for John is going to Boston by bus. 
Peirce experimented with various graphic methods for representing the other operators of his algebraic 
notation, but like the AI researchers of the 1960s, he couldn’t find a good way of expressing the scope 
of quantifiers and negation. In 1897, however, he discovered a simple, but brilliant innovation for his 
new version of existential graphs (EGs):  an oval enclosure for showing scope. The default operator for 
an oval with no other marking is negation, but any metalevel relation can be linked to the oval. Sowa 
(1984) adopted Peirce’s convention for CGs, but with rectangles instead of ovals:  rectangles nest better 
than ovals; and more importantly, each context box can be interpreted as a concept box that contains a 
nested CG. A nest of two negations indicates a implication, as in Figure 4, which shows an EG and a 
CG for the sentence If a farmer owns a donkey, then he beats it. 



 

Figure 4:  EG and CG for If a farmer owns a donkey, then he beats it. 
To enhance the contrast between negative areas (nested in an odd number of ovals) and positive areas 
(nested in an even number of ovals), Peirce would shade the negative areas. As Figure 4 illustrates, the 
primary difference between EGs and CGs is the interpretation of the links:  in EGs, each line of identity 
represents an existentially quantified variable, which is attached to the relations; in CGs, the concept 
boxes represent existential quantifiers, and the arcs merely link relation nodes to their arguments. 
Another difference is that the CG type labels become monadic relations in EGs. Unlike EGs, in which 
an unmarked oval represents negation, the symbol ~ marks a negated CG context. Both the EG and the 
CG could be represented by the following formula: 

~(∃x)(∃y)(Farmer(x)  Donkey(∧ y)  Owns(∧ x,y)  ~Beats(∧ x,y)) 

In order to preserve the correct scope of quantifiers, the implication operator  cannot be used to⊃  
represent the English if-then construction unless the existential quantifiers are moved to the front and 
converted to universals: 

(∀x)(∀y)((Farmer(x)  Donkey(∧ y)  Owns(∧ x,y))  Beats(⊃ x,y)) 

In English, this formula could be read For every x and y, if x is a farmer who owns a donkey y, then x  
beats y. The unusual nature of this paraphrase led Kamp (1981) to develop discourse representation 
structures (DRSs) whose logical structure is isomorphic to Peirce’s existential graphs (Figure 5). 

 

Figure 5:  EG and DRS for If a farmer owns a donkey, then he beats it. 
Kamp’s primitives are the same as Peirce’s:  the default quantifier is the existential, and the default 
Boolean operator is conjunction; negation is represented by a context box, and implication is 
represented by two contexts. As Figure 5 illustrates, the nesting of Peirce’s contexts allows the 
quantifiers in the antecedent of an implication to include the consequent within their scope. Although 
Kamp connected his boxes with an arrow, he made exactly the same assumption about the scope of 
quantifiers. Kamp and Reyle (1993) went much further than Peirce in analyzing discourse and 



formulating the rules for interpreting anaphoric references, but any rule stated in terms of the DRS 
notation can also be applied to the EG or CG notation. 

The CG in Figure 4 represents the verbs owns and beats as dyadic relations. That was the choice of 
relations selected by Kamp, and it can also be used with the EG or CG notation. Peirce, however, noted 
that the event or state expressed by a verb is also an entity that could be referenced by a quantified 
variable. That point was independently rediscovered by linguists, computational linguists, and 
philosophers such as Davidson (1967). The CG in Figure 6 shows a representation that treats events 
and states as entities linked to their participants by case relations or thematic roles. 

 

Figure 6:  CG with case relations shown explicitly 

The type labels If and Then in Figure 6 are defined as synonyms for negated contexts. The state of 
owning is linked to its participants by the relations experiencer (Expr) and theme (Thme), and the act 
of beating by the relations agent (Agnt) and patient (Ptnt). Following is the equivalent in typed 
predicate calculus: 

~(∃x:Farmer)(∃y:Own)(∃z:Donkey)(Expr(y,x)  (Thme(∧ y,z)  ∧
      ~(∃w:Beat)(Agnt(w,x)  Ptnt(∧ w,z))) 

The model-theoretic semantics for the EGs and CGs shown in this section is specified in the ISO 
standard for Common Logic (CL). Section 2 of this article briefly describes the CL project, the CL 
model theory, and the mapping of the CL abstract syntax to and from the Conceptual Graph 
Interchange Format (CGIF), a linear notation that represents every semantic feature of the graphs. 
Section 3 presents the canonical formation rules for CGs and their use with Peirce’s rules of inference 
for full FOL. Section 4 presents the use of CGs for representing propositions, situations, and metalevel 
reasoning. Section 5 discusses research issues that have inspired a variety of formal and informal 
extensions to the conceptual graph theory and notation. 

2. Common Logic
Common Logic (CL) evolved from two projects to develop parallel ANSI standards for conceptual 
graphs and the Knowledge Interchange Format (Genesereth & Fikes 1992). Eventually, those projects 
were merged into a single ISO project to develop a common abstract syntax and model-theoretic 
foundation for a family of logic-based notations (ISO/IEC 24707). Hayes and Menzel (2001) defined a 
very general model theory for CL, which Hayes and McBride (2003) used to define the semantics for 
the languages RDF(S) and OWL. In addition to the abstract syntax and model theory, the CL standard 
specifies three concrete dialects that are capable of expressing the full CL semantics:  the Common 
Logic Interchange Format (CLIF), the Conceptual Graph Interchange Format (CGIF), and the XML-
based notation for CL (XCL). RDF and OWL can also be considered dialects that express subsets of the 
CL semantics:  any statement in RDF or OWL can be translated to CLIF, CGIF, or XCL, but only a 
subset can be translated back to RDF or OWL. 



The CL syntax allows quantifiers to range over functions and relations, but CL retains a first-order style 
of model theory and proof theory. To support a higher-order syntax, but without the computational 
complexity of higher-order semantics, the CL model theory uses a single domain D that includes 
individuals, functions, and relations. The option of limiting the domain of quantification to a single set 
was suggested by Quine (1954) and used in various theorem provers that allow quantifiers to range 
over relations (Chen et al., 1993). 

Conceptual graphs had been a typed version of logic since the first publication in 1976, but Peirce’s 
untyped existential graphs are sufficiently general to express the full CL semantics. Therefore, two 
versions of the Conceptual Graph Interchange Format are defined in the standard:  

• Core CGIF.  A typeless version of logic that expresses the full CL semantics. This dialect 
corresponds to Peirce’s existential graphs:  its only primitives are conjunction, negation, and the 
existential quantifier. It does permit quantifiers to range over relations, but Peirce also 
experimented with that option for EGs. 

• Extended CGIF. An upward compatible extension of the core, which adds a universal 
quantifier; type labels for restricting the range of quantifiers; Boolean contexts with type labels 
If, Then, Either, Or, Equivalence, and Iff; and the option of importing external text 
into any CGIF text. 

Although extended CGIF is a typed language, it is not strongly typed, because type labels are used only 
to restrict the range of quantifiers. Instead of causing a syntax error, as in the strongly typed logic Z 
(ISO/IEC 13568), a type mismatch in CGIF just causes the subexpression in which the mismatch 
occurs to be false. If a typed sentence in Z is translated to CGIF, it will have the same truth value in 
both languages, but a type mismatch, such as the following, is handled differently in each: 
     ~[ [Elephant: 23] ]

This CGIF sentence, which is syntactically correct and semantically true, says that 23 is not an 
elephant. If translated to Z, however, the type mismatch would cause a syntax error. The more lenient 
method of handling types is necessary for representing sentences derived from other languages, both 
natural and artificial. RDF and OWL, for example, can be translated to CGIF and CLIF, but not to Z. 

The conceptual graph in Figure 1, which represents the sentence John is going to Boston by bus, can be 
written in the following form in extended CGIF: 
   [Go *x] [Person: John] [City: Boston] [Bus *y]
   (Agnt ?x John) (Dest ?x Boston) (Inst ?x ?y)

In CGIF, concepts are marked by square brackets, and conceptual relations are marked by parentheses. 
A character string prefixed with an asterisk, such as *x, marks a defining node, which may be 
referenced by the same string prefixed with a question mark, ?x. These strings, which are called name 
sequences in Common Logic, represent coreference labels in CGIF and variables in other versions of 
logic. Following is the equivalent in CLIF: 
   (exists ((x Go) (y Bus))
      (and (Person John) (city Boston)
           (Agnt x John) (Dest x Boston) (Inst x y) ))

In the CL standard, extended CGIF is defined by a translation to core CGIF, which is defined by a 
translation to the CL abstract syntax. Following is the untyped core CGIF and the corresponding CLIF 
for the above examples:

 



   [*x] [*y]
   (Go ?x) (Person John) (City Boston) (Bus ?y)
   (Agnt ?x John) (Dest ?x Boston) (Inst ?x ?y)

   (exists (x y)
      (and (Go x) (Person John) (city Boston) (Bus y)
           (Agnt x John) (Dest x Boston) (Inst x y) ))

In core CGIF, the most common use for concept nodes is to represent existential quantifiers. A node 
such as [*x] corresponds to an EG line of identity, such as the one attached to the relation Go in Figure 
3. It is permissible to write names in a concept node such as [: John], but in most cases, such nodes 
are unnecessary because names can also be written in relation nodes. A concept node may contain more 
than one name or coreference label, such as [: John ?z]. In EGs, that node corresponds to a 
ligature that links two lines of identity; in CLIF, it corresponds to an equality:  (= John z). 

Although CGIF and CLIF look similar, there are several fundamental differences: 

1. Since CGIF is a serialized representation of a graph, labels such as x or y represent connections 
between nodes in CGIF, but variables in CLIF or predicate calculus. 

2. Since the nodes of a graph have no inherent ordering, a CGIF sentence is an unordered list of 
nodes. Unless grouped by context brackets, the list may be permuted without affecting the 
semantics. 

3. The CLIF operator and does not occur in CGIF because the conjunction of nodes within any 
context is implicit. Omitting the conjunction operator in CGIF tends to reduce the number of 
parentheses. 

4. Since CGIF labels show connections of nodes, they may be omitted when they are not needed. 
One way to reduce the number of labels is to move concept nodes inside the parentheses of 
relation nodes: 
   [Go *x]
      (Agnt ?x [Person: John])
      (Dest ?x [City: Boston])
      (Inst ?x [Bus])

When written in this way, CGIF looks like a frame notation. It is, however, much more general 
than frames, since it can represent the full semantics of CL. 

As another example, Figure 7 shows a CG for the sentence If a cat is on a mat, then it is a happy pet. 
The dotted line that connects the concept [Cat] to the concept [Pet], which is called a coreference 
link, indicates that they both refer to the same entity. The Attr relation indicates that the cat, also 
called a pet, has an attribute, which is an instance of happiness. 

 

Figure 7:  CG display form for If a cat is on a mat, then it is a happy pet. 



The coreference link in Figure 7 is shown in CGIF by the defining label *x in the concept [Cat: 
*x] and the bound label ?x in the concept [Pet: ?x]. Following is the extended CGIF and its 
translation to core CGIF: 
   [If: [Cat *x] [Mat *y] (On ?x ?y)
      [Then: [Pet ?x] [Happy *z] (Attr ?x ?z) ]]

   ~[ [*x] [*y] (Cat ?x) (Mat ?y) (On ?x ?y)
      ~[ (Pet ?x) [*z] (Happy ?z) (Attr ?x ?z) ]]

In CGs, functions are represented by conceptual relations called actors. Figure 8 is the CG display form 
for the following equation written in ordinary algebraic notation: 
   y = (x + 7)/sqrt(7)

The three functions in this equation would be represented by three actors, which are shown in Figure 8 
as diamond-shaped nodes with the type labels Add, Sqrt, and Divide. The concept nodes contain 
the input and output values of the actors. The two empty concept nodes contain the output values of 
Add and Sqrt. 

 

Figure 8:  CL functions represented by actor nodes 

In CGIF, actors are represented as relations with two kinds of arcs:  a sequence of input arcs and a 
sequence of output arcs, which are separated by a vertical bar: 
   [Number: *x] [Number: *y] [Number: 7]
   (Add ?x 7 | [*u]) (Sqrt 7 | [*v]) (Divide ?u ?v | ?y)

In the display form, the input arcs of Add and Divide are numbered 1 and 2 to indicate the order in 
which the arcs are written in CGIF. Following is the corresponding CLIF: 
   (exists ((x Number) (y Number))
      (and (Number 7) (= y (Divide (Add x 7) (Sqrt 7)))))

No CLIF variables are needed to represent the coreference labels *u and *v since the functional 
notation used in CLIF shows the connections directly. 

CLIF only permits functions to have a single output, but extended CGIF allows actors to have multiple 
outputs. The following actor of type IntegerDivide has two inputs:  an integer x and an integer 7. 
It also has two outputs:  a quotient u and a remainder v. 
   (IntegerDivide [Integer: *x] [Integer: 7] | [*u] [*v])

When this actor is translated to core CGIF or CLIF, the vertical bar is removed, and the actor becomes 
an ordinary relation with four arguments; the distinction between inputs and outputs is lost. In order to 
assert the constraint that the last two arguments are functionally dependent on the first two arguments, 
the following CGIF sentence asserts that there exist two functions, identified by the coreference labels 



Quotient and Remainder, which for every combination of input and output values are logically 
equivalent to an actor of type IntegerDivide with the same input and output values: 
   [Function: *Quotient] [Function: *Remainder]
   [[@every*x1] [@every*x2] [@every*x3] [@every*x4]
   [Equiv: [Iff: (IntegerDivide ?x1 ?x2 | ?x3 ?x4)]
           [Iff: (#?Quotient ?x1 ?x2 | ?x3) (#?Remainder ?x1 ?x2 | ?x4)]]]

Each line of this example illustrates one or more features of CGIF. The first line represents existential 
quantifiers for two entities of type Function. On the second line, the context bracket [ encloses the 
concept nodes with universal quantifiers, marked by @every, to show that the existential quantifiers 
for Quotient and Remainder include the universals within their scope. The equivalence on lines 
three and four shows that an actor of type IntegerDivide is logically equivalent to a conjunction of 
the quotient and remainder functions. Finally, the symbol # on line four shows that the coreference 
labels ?Quotient and ?Remainder are being used as type labels. Following is the corresponding 
CLIF: 
   (exists ((Quotient Function) (Remainder Function))
      (forall (x1 x2 x3 x4)
         (iff (IntegerDivide x1 x2 x3 x4)
              (and (= x3 (Quotient x1 x2)) (= x4 (Remainder x1 x2))))))

As another example of the use of quantification over relations, someone might say “Bob and Sue are 
related,” but not say exactly how they are related. The following sentences in CGIF and CLIF state that 
there exists some familial relation r that relates Bob and Sue: 
   [Relation: *r] (Familial ?r) (#?r Bob Sue)

   (exists ((r Relation)) (and (Familial r) (r Bob Sue)))

The concept [Relation: *r] states that there exists a relation r. The next two relations state that r 
is familial and r relates Bob and Sue. 

This brief survey has illustrated nearly every major feature of CGIF and CLIF. One important feature 
that has not been mentioned is the use of sequence variables to support relations with a variable 
number of arguments. Another is the use of comments, which can be placed before, after, or inside any 
concept or relation node in CGIF. The specifications in the CL standard guarantee that any sentence 
expressed in any of the three fully conformant dialects — CLIF, CGIF, or XCL — can be translated to 
any of the others in a logically equivalent form. Although the translation will preserve the semantics, it 
is not guaranteed to preserve all syntactic details:  a sentence translated from one dialect to another and 
then back to the first will be logically equivalent to the original, but some subexpressions might be 
reordered or replaced by semantic equivalents. 

In general, Common Logic is a superset of many different logic-based languages and notations, 
including the traditional predicate-calculus notation for first-order logic. But since various languages 
have been designed and implemented at widely separated times and places, that generalization must be 
qualified with different caveats for each case: 

• Semantic Web Languages. The CL standard supports the URIs defined by the W3C as valid 
CL name sequences, and it allows text stored on the web to be imported into CLIF, CGIF, or 
XCL documents. The tools that import the text could, if necessary, translate one dialect to 
another at import time. Since the semantics for RDF(S) and OWL was designed as a subset of 
the CL model theory, those languages can be translated to any fully conformant CL dialect 



(Hayes 2005). 

• Z Specification Language. The Z model theory is a subset of the CL model theory, but the 
syntax of Z enforces strong type checking, and it does not permit quantifiers to range over 
functions and relations. Therefore, Z statements can be translated to CL, but only those 
statements that originally came from Z are guaranteed to be translatable back to Z. 

• Unified Modeling Language (UML). Although the UML diagrams and notations are loosely 
based on logic, they have no formal specification in any version of logic. The best hope for 
providing a reliable foundation for UML would be to implement tools that translate UML to CL. 
If done properly, such tools could define a de facto standard for UML semantics. 

• Logic-Programming Languages. Well-behaved languages that support classical negation can 
be translated to CL while preserving the semantics. Languages such as Prolog that are based on 
negation as failure could be translated to CL, but with the usual caveats about ways of working 
around the discrepancies. 

• SQL Database Language. The WHERE clause in SQL queries and constraints can state an 
arbitrary FOL expression, but problems arise with the treatment of null values in the database 
and with differences between the open-world and closed-world assumptions. To avoid the 
nonlogical features of SQL, CL can be mapped to and from the Datalog language, which 
supports the Horn-clause subset of FOL and has a direct mapping to the SQL operations. 

Most people have strong attachments to their favorite syntactic features. The goal of the Common 
Logic project is to provide a very general semantics that enables interoperability at the semantic level 
despite the inevitable syntactic differences. CL has demonstrated that such seemingly diverse notations 
as conceptual graphs, predicate calculus, and the languages of the Semantic Web can be treated as 
dialects with a common semantic foundation. An extension of CL called IKL, which is discussed in 
Section 5, can support an even wider range of logics. 

3. Reasoning with Graphs
Graphs have some advantages over linear notations in both human factors and computational 
efficiency. As Figures 1 to 8 illustrate, graphs show relationships at a glance that are harder to see in 
linear notations, including CGIF and CLIF. Graphs also have a highly regular structure that can 
simplify many algorithms for reasoning, searching, indexing, and pattern matching. Yet AI research has 
largely ignored the structural properties of graphs, and some of the most advanced research on 
representing, indexing, and manipulating graphs has been done in organic chemistry. With his BS 
degree in chemistry, Peirce was the first to recognize the similarity between chemical graphs and 
logical graphs. He wanted to represent the “atoms and molecules of logic” in his existential graphs, and 
he used the word valence for the number of arguments of a relation. By applying algorithms for 
chemical graphs to conceptual graphs, Levinson and Ellis (1992) implemented the first type hierarchy 
that could support retrieval and classification in logarithmic time. More recent research on chemical 
graphs has been used in algorithms for computing semantic distance between CGs. Those techniques 
have enabled analogy finding in logarithmic time, instead of the polynomial-time computations of the 
older methods (Sowa & Majumdar 2003). 

The six canonical formation rules (Sowa 2000) are examples of graph-based operators that focus on 
the semantics. Combinations of these rules, called projection and maximal join, perform larger 
semantic operations, such as answering a question or comparing the relevance of different alternatives. 
Each rule has one of three possible effects on the logical relationship between a starting graph u and the 
resulting graph v: 



• Equivalence.  Copy and simplify are equivalence rules, which generate a graph v that is 
logically equivalent to the original:  u⊃v and v⊃u. Equivalent graphs are true in exactly the 
same models. 

• Specialization.  Join and restrict are specialization rules, which generate a graph v that implies 
the original:  v⊃u. Specialization rules monotonically decrease the set of models in which the 
result is true. 

• Generalization.  Detach and unrestrict are generalization rules, which generate a graph v that is 
implied by the original:  u⊃v. Generalization rules monotonically increase the set of models in 
which the result is true. 

Each rule has an inverse rule that undoes any change caused by the other. The inverse of copy is 
simplify, the inverse of restrict is unrestrict, and the inverse of join is detach. These rules are 
fundamentally graphical:  they are easier to show than to describe. The next three diagrams (Figures 9, 
10, and 11) illustrate these rules with simple graphs, which use only conjunction and existential 
quantifiers. When rules for handling negation are added, they form a complete proof procedure for 
first-order logic with equality. 

 

Figure 9:  Copy and simplify rules 

The CG at the top of Figure 9 represents the sentence The cat Yojo is chasing a mouse. The down arrow 
represents two applications of the copy rule. One application copies the Agnt relation, and a second 
copies the subgraph →(Thme)→[Mouse]. The coreference link connecting the two [Mouse] 
concepts indicates that both concepts refer to the same individual. The up arrow represents two 
applications of the simplify rule, which performs the inverse operations of erasing redundant copies. 
Following are the CGIF sentences for both graphs: 
     [Cat: Yojo] [Chase: *x] [Mouse: *y] (Agent ?x Yojo) (Thme ?x ?y)

     [Cat: Yojo] [Chase: *x] [Mouse: *y] [Mouse: ?y]
     (Agent ?x Yojo) (Agent ?x Yojo) (Thme ?x ?y) (Thme ?x ?y)

As the CGIF illustrates, the copy rule makes redundant copies, which are erased by the simplify rule. In 
effect, the copy rule is p (⊃ p∧p), and the simplify rule is (p∧p)⊃p. 



 

Figure 10:  Restrict and unrestrict rules 

The CG at the top of Figure 10 represents the sentence A cat is chasing an animal. By two applications 
of the restrict rule, it is transformed to the CG for The cat Yojo is chasing a mouse. In the first step, the 
concept [Cat], which says that there exists some cat, is restricted by referent to the more specific 
concept [Cat: Yojo], which says that there exists a cat named Yojo. In the second step, the concept 
[Animal], which says that there exists an animal, is restricted by type to a concept of a subtype 
[Mouse]. The more specialized graph implies the more general one:  if the cat Yojo is chasing a 
mouse, then a cat is chasing an animal. 

To show that the bottom graph v of Figure 10 implies the top graph u, let c be a concept of u that is 
being restricted to a more specialized concept d, and let u be c∧w, where w is the remaining 
information in u. By hypothesis, d⊃c. Therefore, (d∧w) (⊃ c∧w). Hence, v⊃u. 

 

Figure 11:  Join and detach rules 

At the top of Figure 11 are two CGs for the sentences Yojo is chasing a mouse and A mouse is brown. 
The join rule overlays the two identical copies of the concept [Mouse] to form a single CG for the 
sentence Yojo is chasing a brown mouse. The detach rule undoes the join to restore the top graphs. 
Following are the CGIF sentences that represent the top and bottom graphs of Figure 11: 
     [Cat: Yojo] [Chase: *x] [Mouse: *y] (Agent ?x Yojo) (Thme ?x ?y)
     [Mouse: *z] [Brown: *w] (Attr ?z ?w)

     [Cat: Yojo] [Chase: *x] [Mouse: *y] (Agent ?x Yojo) (Thme ?x ?y)
     [Brown: *w] (Attr ?y ?w)

As the CGIF illustrates, the bottom graph consists of substituting y for every occurrence of z in the top 
graph and erasing redundant copies. In general, every join assumes an equality of the form y=z and 
simplifies the result. If q is the equality and u is original pair of graphs at the top, then the bottom graph 



is equivalent to q∧u, which implies u. Therefore, the result of join implies the original graphs. 

Together, the generalization and equivalence rules are sufficient for a complete proof procedure for the 
subset of logic whose only operators are conjunction and the existential quantifier. The specialization 
and equivalence rules can be used in a refutation procedure for a proof by contradiction. To handle full 
first-order logic, rules for negations must be added. Peirce defined a complete proof procedure for FOL 
whose rules depend on whether a context is positive (nested in an even number of negations, possibly 
zero) or negative (nested in an odd number of negations). Those rules are grouped in three pairs, one of 
which (i) inserts a graph and the other (e) erases a graph. The only axiom is a blank sheet of paper (an 
empty graph with no nodes); in effect, the blank is a generalization of all other graphs. Following is a 
restatement of Peirce’s rules in terms of specialization and generalization. These same rules apply to 
both propositional logic and full first-order logic. In FOL, the operation of inserting or erasing a 
connection between two nodes has the effect of identifying two nodes (i.e., a substitution of a value for 
a variable) or treating them as possibly distinct. 

1. i.  In a negative context, any graph or subgraph (including the blank) may be replaced by any 
specialization. 

e.  In a positive context, any graph or subgraph may be replaced by any generalization 
(including the blank). 

2. i.  Any graph or subgraph in any context c may be copied in the same context c or into any 
context nested in c. (The only exception is that no graph may be copied directly into itself; 
however, it is permissible to copy a graph g in the context c and then to copy the copy into the 
original g.) 

e.  Any graph or subgraph that could have been derived by rule 2i may be erased. (Whether or 
not the graph was in fact derived by 2i is irrelevant.) 

3. i.  A double negation (nest of two negations with nothing between the inner and outer) may be 
drawn around any graph, subgraph, or set of graphs in any context. 

e.  Any double negation in any context may be erased. 

This version of the rules was adapted from a tutorial on existential graphs by Peirce (1909). He 
originally formulated these rules in 1897 and finally published them in 1906, but they are a 
simplification and generalization of the rules of natural deduction by Gentzen (1935). When these rules 
are applied to CGIF, some adjustments may be needed to rename coreference labels or to convert a 
bound label to a defining label or vice versa. For example, if a defining node is erased, a bound label 
may become the new defining label. Such adjustments are not needed in the pure graph notation. For 
further discussion of Peirce’s rules of inference, see the commentary by Sowa (2010). 

All the axioms and rules of inference for classical FOL, including the rules of the Principia  
Mathematica, natural deduction, and resolution, can be proved in terms of Peirce’s rules. As an 
example, Frege’s first axiom, written in Peirce-Peano notation, is a (⊃ b⊃a). Figure 12 shows a proof by 
Peirce’s rules. To improve contrast, positive areas are shown in white, and negative areas are shaded. 

 

Figure 12:  Proof of Frege’s first axiom by Peirce’s rules 



In core CGIF, the propositions a and b could be represented as relations with zero arguments. 
Following are the five steps of Figure 12 written in core CGIF: 

1. By rule 3i, Insert a double negation around the blank:  ~[ ~[ ]] 

2. By 3i, insert a double negation around the previous one:  ~[ ~[ ~[ ~[ ]]]] 

3. By 1i, insert (a):  ~[ (a) ~[ ~[ ~[ ]]]] 

4. By 2i, copy (a):  ~[ (a) ~[ ~[ ~[ (a) ]]]] 

5. By 1i, insert (b):  ~[ (a) ~[ ~[ (b) ~[ (a) ]]]] 

The theorem to be proved contains five symbols, and each step of the proof inserts one symbol into its 
proper place in the final result. Frege had a total of eight axioms, and the Principia had five. All of 
them could be derived by similarly short proofs. 

Frege’s two rules of inference, which Whitehead and Russell adopted, were modus ponens and 
universal instantiation. Figure 13 is a proof of modus ponens, which derives q from a statement p and 
an implication p⊃q: 

 

Figure 13:  Proof of modus ponens 

Following are the four EGs of Figure 13 written in core CGIF: 

1. Starting graphs:  (p) ~[ (p) ~[ (q) ]] 

2. By 2e, erase the nested copy of (p):  (p) ~[ ~[ (q) ]] 

3. By 1e, erase (p):  ~[ ~[ (q) ]] 

4. By 3e, erase the double negation:  (q) 

Frege’s other rule of inference is universal instantiation, which allows any term t to be substituted for a 
universally quantified variable in a statement of the form (∀x)P(x). In EGs, the term t would be 
represented by a graph of the form —t, which states that something satisfying the condition t exists, 
and the universal quantifier corresponds to a negated existential:  a line whose outermost part (the 
existential quantifier) occurs in a negative area. Since a graph has no variables, there is no notion of 
substitution. Instead, the proof in Figure 14 performs the equivalent operation by connecting the two 
lines. 

 

Figure 14:  Proof of universal instantiation 

The absence of labels on the EG lines simplifies the proofs by eliminating the need to relabel variables 
in CLIF or coreference links in CGIF. In core CGIF, the first step is the linear version of Figure 14: 

1. Starting graphs:  [*x] (t ?x) ~[ [*y] ~[ (P ?y) ]] 

2. By 2i, copy [*x] and change the defining label *x to a bound label ?x in the copy:  



[*x] (t ?x) ~[ [?x] [*y] ~[ (P ?y) ]] 

3. By 1i, insert a connection between the two lines. In CGIF, that corresponds to relabeling *y and 
?y to ?x and erasing redundant copies of [?x]:  [*x] (t ?x) ~[ ~[ (P ?x) ]] 

4. By 3e, erase the double negation:  [*x] (t ?x) (P ?x) 

With the universal quantifier in extended CGIF, the starting graphs of Figure 14 could be written 
     [*x] (t ?x) [(P [@every*y])]

The extra brackets around the last node ensure that the existential quantifier [*x] includes the 
universal @every*y within its scope. Then universal instantiation could be used as a one-step derived 
rule to generate line 4. After @every has been erased, the brackets around the last node are not needed 
and may be erased. 

In the Principia Mathematica, Whitehead and Russell proved the following theorem, which Leibniz 
called the Praeclarum Theorema (Splendid Theorem). It is one of the last and most complex theorems 
in propositional logic in the Principia, and it required a total of 43 steps, starting from five nonobvious 
axiom schemata. 

((p⊃r)  (∧ q⊃s))  ((⊃ p∧q)  (⊃ r∧s)) 

With Peirce’s rules, this theorem can be proved in just seven steps starting with a blank sheet of paper 
(Figure 15). Each step of the proof inserts or erases one graph, and the final graph is the statement of 
the theorem. 

 

Figure 15:  Proof in 7 steps instead of 43 in the Principia 

After only four steps, the graph looks almost like the desired conclusion, except for a missing copy of s 
inside the innermost area. Since that area is positive, it is not permissible to insert s directly. Instead, 
Rule 2i copies the graph that represents q⊃s. By Rule 2e, the next step erases an unwanted copy of q. 
Finally, Rule 3e erases a double negation to derive the conclusion. 

Unlike Gentzen’s version of natural deduction, which uses a method of making and discharging 
assumptions, Peirce’s proofs proceed in a straight line from a blank sheet to the conclusion:  every step 
inserts or erases one subgraph in the immediately preceding graph. As Figure 15 illustrates, the first 
two steps of any proof that starts with a blank must draw a double negation around the blank and insert 



a graph into the negative area. That graph is usually the entire hypothesis of the theorem to be proved. 
The remainder of the proof develops the conclusion in the doubly nested blank area. Those two steps 
are the equivalent of Gentzen’s method of making and discharging an assumption, but in Gentzen’s 
approach, the two steps may be separated by arbitrarily many intervening steps, and a system of 
bookkeeping is necessary to keep track of the assumptions. With Peirce’s rules, the second step follows 
immediately after the first, and no bookkeeping is required. 

Most common proofs take about the same number of steps with Peirce’s rules as with Gentzen’s 
version of natural deduction or his sequent calculus. For some kinds of proofs, however, Peirce’s rules 
can be much faster because of a property that is not shared by any other common proof procedure:  the 
rules depend only on whether an area is positive or negative; the depth of nesting is irrelevant. That 
property implies the “cut-and-paste theorem” (Sowa 2000), which is proved in terms of Peirce’s rules, 
but it can be used in any notation for first-order logic: 

• Theorem.  If a proof p q is possible on a blank sheet, then in any positive area of a graph or 
formula where p occurs, q may be substituted for p. 

• Proof.  Since the area in which p occurs is positive, every step of the proof of q can be carried 
out in that area. Therefore, it is permissible to “cut out” and “paste in” the steps of the proof 
from p to q in that area. After q has been derived, Rule 1e can be applied to erase the original p 
and any remaining steps of the proof other than q. 

Dau (2006) showed that certain proofs that take advantage of this theorem or the features of Peirce’s 
rules that support it can be orders of magnitude shorter than proofs based on other rules of inference. 
Conventional rules, for example, can only be applied to the outermost operator. If a graph or formula 
happens to contain a deeply nested subformula p, those rules cannot replace it with q. Instead, many 
steps may be needed to bring p to the surface of some formula to which conventional rules can be 
applied. An example is the cut-free version of Gentzen’s sequent calculus, in which proofs can 
sometimes be exponentially longer than proofs in the usual version. With Peirce’s rules, the 
corresponding cut-free proofs are only longer by a polynomial factor. 

The canonical formation rules have been implemented in nearly all CG systems, and they have been 
used in formal logic-based methods, informal case-based reasoning, and various computational 
methods. A multistep combination, called a maximal join, is used to determine the extent of the 
unifiable overlap between two CGs. In natural language processing, maximal joins can help resolve 
ambiguities and determine the most likely connections of new information to background knowledge 
and the previous context of a discourse. Stewart (1996) implemented Peirce’s rules of inference in a 
first-order theorem prover for EGs and showed that its performance is comparable to resolution 
theorem provers. In all reasoning methods, formal and informal, a major part of the time is spent in 
searching for relevant rules, axioms, or background information. Ongoing research on efficient 
methods of indexing graphs and selecting the most relevant information has shown great improvement 
in many cases, but more work is needed to incorporate such indexing into conventional reasoning 
systems. 

4. Propositions, Situations, and Metalanguage
Natural languages are highly expressive systems that can state anything that has ever been stated in any 
formal language or logic. They can even express metalevel statements about themselves, their 
relationships to other languages, and the truth of any such statements. Such enormous expressive power 
can easily generate contradictions and paradoxes, such as the statement This sentence is false. Most 
formal languages avoid such paradoxes by imposing restrictions on the expressive power. Common 



Logic, for example, can represent any sentence in any CL dialect as a quoted string, and it can even 
specify the syntactic structure of such strings. But CL has no mechanism for treating such strings as CL 
sentences and relating substrings in them to the corresponding CL names. 

Although the paradoxes of logic are expressible in natural language, the most common use of language 
about language is to talk about the beliefs, desires, and intentions of the speaker and other people. 
Many versions of logic and knowledge representation languages, including conceptual graphs, have 
been used to express such language. As an example, the sentence Tom believes that Mary wants to  
marry a sailor, contains three clauses, whose nesting may be marked by brackets: 
     Tom believes that [Mary wants [to marry a sailor]].

The outer clause asserts that Tom has a belief, which is expressed by the object of the verb believe. 
Tom’s belief is that Mary wants a situation described by the nested infinitive, whose subject is the same 
person who wants the situation. Each clause makes a comment about the clause or clauses nested in it. 
References to the individuals mentioned in those clauses may cross context boundaries in various ways, 
as in the following two interpretations of the original English sentence: 
     Tom believes that [there is a sailor whom Mary wants [to marry]].
     There is a sailor whom Tom believes that [Mary wants [to marry]].

The two conceptual graphs in Figure 16 represent the first and third interpretations. In the CG on the 
left, the existential quantifier for the concept [Sailor] is nested inside the situation that Mary wants. 
Whether such a sailor actually exists and whether Tom or Mary knows his identity are undetermined. 
The CG on the right explicitly states that such a sailor exists; the connections of contexts and relations 
imply that Tom knows him and that Tom believes that Mary also knows him. Another option (not 
shown) would place the concept [Sailor] inside the context of type Proposition; it would leave 
the sailor’s existence undetermined, but it would imply that Tom believes he exists and that Tom 
believes Mary knows him. 

 

Figure 16:  Two interpretations of Tom believes that Mary wants to marry a sailor 

The context boxes illustrated in Figures 4 and 6 express negations or operators such as If and Then, 
which are defined in terms of negations. But the contexts of type Proposition and Situation in 
Figure 16 raise new issues of logic and ontology. The CL semantics can represent entities of any type, 
including propositions and situations, but it has no provision for relating such entities to the internal 
structure of CL sentences. A more expressive language, called IKL (Hayes & Menzel 2006), was 
defined as an upward compatible extension of CL. The IKL semantics introduces entities called 
propositions and a special operator, spelled that, which relates IKL sentences to the propositions they 
express. IKL semantics does not have a built-in type for situations, but it is possible in IKL to make 
statements that state the existence of entities of type Situation and relate them to propositions. 



The first step toward translating the CGs in Figure 16 to IKL is to write them in an extended version of 
CGIF, which allows CGs to be nested inside concept nodes of type Proposition or Situation. 
Following is the CGIF for the CG on the left: 
     [Person: Tom] [Believe: *x1] (Expr ?x1 Tom)
     (Thme ?x1 [Proposition:
        [Person: Mary] [Want: *x2] (Expr ?x2 Mary)
        (Thme ?x2 [Situation:
           [Marry: *x3] [Sailor: *x4] (Agnt ?x3 Mary) (Thme ?x3 ?x4)])])

This statement uses the option of moving the concept nodes for the types Proposition and 
Situation inside the relation nodes of type Thme. That option has no semantic significance, but it 
makes the order of writing the CGIF closer to English word order. A much more important semantic 
question is the relation between situations and propositions. In the ontology commonly used with CGs, 
that relation is spelled Dscr and called the description relation. The last two lines of the CGIF 
statement above could be rewritten in the following form: 
     (Thme ?x2 [Situation: *s]) (Dscr ?s [Proposition:
        [Marry: *x3] [Sailor: *x4] (Agnt ?x3 Mary) (Thme ?x3 ?x4)])])

The last line is unchanged, but the line before it states that the theme of x2 is the situation s and the 
description of s is the proposition stated on the last line. In effect, every concept of type Situation 
that contains a nested CG is an abbreviation for a situation that is described by a concept of type 
Proposition that has the same nested CG. This expanded CGIF statement can then be translated to 
IKL (which is based on CLIF syntax with the addition of the operator that). 
     (exists ((x1 Believe)) (and (Person Tom) (Expr x1 Tom)
     (Thme x1 (that
        (exists ((x2 Want) (s Situation)) (and (Person Mary) (Expr x2 Mary)
        (Thme x2 s) (Dscr s (that
           (exists ((x3 Marry) (x4 Sailor)) (and (Agnt x3 Mary) (Thme x3 x4)
     ))))))))))

Each line of the IKL statement expresses the equivalent of the corresponding line in CGIF. Note that 
every occurrence of Proposition in CGIF corresponds to that in IKL. The syntax of CLIF or IKL 
requires more parentheses than CGIF because every occurrence of (exists or (and requires an 
extra closing parenthesis at the end. 

As these examples illustrate, the operator that adds an enormous amount of expressive power, but 
IKL still has a first-order style of semantics. The proposition nodes in CGs or the that operator in 
IKL introduce abstract entities of type Proposition. Although language about propositions is a kind 
of metalanguage, it does not, by itself, go beyond first-order logic. Tarski (1933), for example, 
demonstrated how a stratified series of metalevels, each of which is purely first order, can be used 
without creating paradoxes or going beyond the semantics of FOL. In effect, Tarski avoided paradoxes 
by declaring that certain kinds of sentences (those that violate the stratification) do not express 
propositions in his models. The IKL model theory avoids the paradoxes by deriving a stable, but false 
truth value for the troublesome sentences. For example, the following English sentence, which sounds 
paradoxical, could be expressed in either IKL or CGIF syntax: 

There exists a proposition p, p is true, and p says that p is false. 

Following is a translation to IKL: 
     (exists ((p Proposition)) (and (p) (= p (that (not p)))))



Literally, the IKL sentence says that there exists a proposition p, it asserts (p), and it says that p is 
identical to the proposition that (not p). It is false because no proposition is identical to its negation. 
Following is the equivalent in CGIF: 
     [Proposition: *p] (#?p) [Proposition: ?p ~[(#?p)]]

The first concept says that there exists a proposition p, the relation (#?p) asserts p, and the last 
concept says that p is coreferent with the proposition that not p. Coreference in CGIF has the same 
effect as equality in CLIF. 

5. Research Extensions
Over the years, the term conceptual graph has been used in a broad sense as any notation that has a 
large overlap with the the notation used in the book by Sowa (1984). That usage has led to a large 
number of dialects with varying degrees of compatibility. The purpose of a standard is to stabilize a 
design at a stage where it can provide a fixed, reliable platform for the development of products and 
applications. A fixed design, however, is an obstacle to innovation in the platform itself, although it is 
valuable for promoting innovation in applications that use the platform. In order to support 
fundamental research while providing a stable platform for applications, it’s important to distinguish 
ISO standard CGs, IKL CGs, and research CGs. The first two provide rich and stable platforms for 
application development, while the third allows research projects to add extensions and modifications, 
which may be needed for a particular application and which may someday be added to the standard. 

Most of the features of the research CGs are required to support natural language semantics. Some of 
them, such as modal operators, are as old as Aristotle, but they are not in the CL standard because their 
semantics involves open research issues. Following are the most common research extensions that have 
been proposed or implemented in various forms over the years: 

• Contexts.  Peirce’s first use for the oval was to negate the graphs nested inside, and that is the 
only use that is recognized by the CL standard. But Peirce (1898) generalized the ovals to 
context enclosures, which allow relations other than negation to be linked to a context. Most of 
those features could be defined in terms of the IKL extensions described in Section 4, but there 
is no consensus on any definitions that could be considered for a standard. 

• Metalanguage.  The basic use of a context enclosure is to quote the nested graphs. That 
metalevel syntax allows any semantic approach to be defined by axioms that specify how the 
nested graphs are interpreted. Sowa (2003, 2006) adapted that approach to a family of nested 
graph models (NGMs), which could be used to formalize the semantics of many kinds of modal 
and intensional logics. A hierarchy of metalevels with the NGM semantics can express the 
equivalent of a wide range of modal, temporal, and intentional logics. The most useful NGMs 
can be represented with the IKL semantics, but the many variations and their application to 
natural languages have not yet been fully explored. 

• Generalized quantifiers.  In addition to the usual quantifiers of every and some, natural 
languages support an open-ended number of quantificational expressions, such as exactly one, 
at least seven, or considerably more. Some of these quantifiers, such as exactly one cat, could 
be represented as [Cat: @1] and defined in terms of the CL standard. Others, such as at least  
seven cats, could be represented [Cat: @≤7] and defined with a version of set theory added 
to the base logic. But quantifiers such as considerably more would require some method of 
approximate reasoning, such as fuzzy sets or rough sets. 
 



• Indexicals.  Peirce observed that every statement in logic requires at least one indexical to fix 
the referents of its symbols. The basic indexical, which corresponds to the definite article the, is 
represented by the symbol # inside a concept node:  [Dog: #] would represent the phrase the 
dog. The pronouns I, you, and she would be represented [Person: #I], 
[Person: #you], and [Person: #she]. To process indexicals, some linguists propose 
versions of dynamic semantics, in which the model is updated during the discourse. A simpler 
method is to treat the # symbol as a syntactic marker that indicates a incomplete interpretation 
of the original sentence. With this approach, the truth value of a CG that contains any 
occurrences of # is not determined until those markers are replaced by names or coreference 
labels. This approach supports indexicals in an intermediate representation, but uses a 
conventional model theory to evaluate the final resolution. 

• Plural nouns.  Plurals have been represented in CGs by set expressions inside the concept 
boxes. The concept [Cat: {*}@3] would represent three cats, and 
[Dog: {Lucky, Macula}] would represent the dogs Lucky and Macula. Various methods 
have been proposed for representing distributed and collective plurals and translating them to 
versions of set theory and mereology. But the representation of plurals is still a research area in 
linguistics, and it is premature to adopt a standard syntax or semantics. 

• Procedural attachments.  The CL standard defines actors as purely functional relations, but 
various implementations have allowed more informal versions, in which the actors represent 
arbitrary procedures. Some versions have implemented token passing algorithms with the 
symbol ? for a backward-chaining request used in a query graph, and with the symbol ! for a 
forward-chaining trigger that asserts a new value. As examples, the concept [Employee: ?] 
would ask which employee, and the concept [Employee: John!] would assert the 
employee John. 

As an example of applied research, one of the largest commercial CG systems is Sonetto (Sarraf & 
Ellis 2006), which uses extended versions of the earlier algorithms by Levinson and Ellis (1992). A key 
innovation of Sonetto is its semi-automated methods for extracting ontologies and business rules from 
unstructured documents. The users who assist Sonetto in the knowledge extraction process are familiar 
with the subject matter, but they have no training in programming or knowledge engineering. CGIF is 
the knowledge representation language for ontologies, rules, and queries. It is also used to manage the 
schemas of documents and other objects in the system and to represent the rules that translate CGIF to 
XML and other formats. For CG research and applications, see the collections edited by Nagle et al. 
(1992), Way (1992), Chein (1996), and Schärfe and Hitzler (2009). Ongoing developments of 
conceptual graphs and related systems are published in the annual proceedings of the International 
Conferences on Conceptual Structures. 

Appendix: CGIF Grammar

Lexical Grammar Rules
The syntax rules are written in Extended Backus-Naur Form (EBNF) rules, as specified by ISO/IEC 
14977. The CGIF syntax rules assume the same four types of names as CLIF:  namecharsequence 
for names not enclosed in quotes; enclosedname for names enclosed in double quotes; numeral 
for numerals consisting of one or more digits; and quotedstring for character strings enclosed in 
single quotes. But because of syntactic differences between CGIF and CLIF, CGIF must enclose more 
names in quotes than CLIF in order to avoid ambiguity. Therefore, the only CG names not enclosed in 



quotes belong to the categories identifier and numeral. 
   CGname = identifier | '"', (namecharsequence - identifier), '"'
            | numeral | enclosedname | quotedstring;
   identifier = letter, {letter | digit | "_"};

When CGIF is translated to CL, a CGname is translated to a CLIF name by removing any quotes 
around a name character sequence. CLIF does not make a syntactic distinction between constants and 
variables, but in CGIF any CGname that is not used as a defining label or a bound label is called a 
constant. The start symbol of CGIF syntax is the category text for a complete text or the category CG 
for just a single conceptual graph. 

Core CGIF Grammar Rules
An actor is a conceptual relation that represents a function in Common Logic. It begins with (, an 
optional comment, an optional string #?, a CG name, |, an arc, an optional end comment, and ). If the 
CG name is preceded by #?, it represents a bound coreference label; otherwise, it represents a type 
label. The arc sequence represents the arguments of the CL function and the last arc represents the 
value of the function. 
   actor = "(", [comment], ["#?"], CGname, arcSequence, "|", arc,
                [endComment], ")";

An arc is an optional comment followed by a reference. It links an actor or a conceptual relation to a 
concept that represents one argument of a CL function or relation. 
   arc = [comment], reference;

An arc sequence is a sequence of zero or more arcs, followed by an option consisting of an optional 
comment, ?, and a sequence marker. 
   arcSequence = {arc}, [[comment], "?", seqmark];

A comment or an end comment is a character string that has no effect on the semantics of a conceptual 
graph or any part of a conceptual graph. A comment begins with "/*", followed by a character string 
that contains no occurrence of "*/", and ends with "*/". A comment may occur immediately after 
the opening bracket of any concept, immediately after the opening parenthesis of any actor or 
conceptual relation, immediately before any arc, or intermixed with the concepts and conceptual 
relations of a conceptual graph. An end comment begins with ;, followed by a character string that 
contains no occurrence of ] or ). An end comment may occur immediately before the closing bracket 
of any concept or immediately before the closing parenthesis of any actor or conceptual relation. 
   comment = "/*", {(character-"*") | ["*", (character-"/")]}, ["*"], "*/";

   endComment = ";", {character - ("]" | ")")};

A concept is either a context, an existential concept, or a coreference concept. Every concept begins 
with [ and an optional comment; and every concept ends with an optional end comment and ]. 
Between the beginning and end, a context contains a CG; an existential concept contains * and either a 
CG name or a sequence marker; and a coreference concept contains : and a sequence of one or more 
references. A context that contains a blank CG is said to be empty, even if it contains one or more 
comments; any comment that occurs immediately after the opening bracket shall be part of the concept, 



not the following CG. 
   concept = "[", [comment],
              (CG | "*", (CGname | seqmark) | ":", {reference}- ),
              [endComment], "]";

A conceptual graph (CG) is an unordered list of concepts, conceptual relations, negations, and 
comments. 
   CG = {concept | conceptualRelation | negation | comment};

A conceptual relation is either an ordinary relation or an actor. An ordinary relation, which represents a 
CL relation, begins with (, an optional comment, an optional string #?, a CG name, an optional end 
comment, and ). If the CG name is preceded by #?, it represents a bound coreference label; otherwise, 
it represents a type label. An ordinary relation has just one sequence of arcs, but an actor has two 
sequences of arcs. 
   conceptualRelation = ordinaryRelation | actor;

   ordinaryRelation = "(", [comment], ["#?"], CGname, arcSequence,
                           [endComment], ")";

A negation is ~ followed by a context. 
   negation = "~", context;

A reference is an optional ? followed by a CG name. A CG name prefixed with ? is called a bound 
coreference label; without the prefix ?, it is called a constant. 
   reference = ["?"], CGname;

A text is a context, called an outermost context, that has an optional name, has an arbitrarily large 
conceptual graph, and is not nested inside any other context. It consists of [, an optional comment, the 
type label Proposition, :, an optional CG name, a conceptual graph, an optional end comment, and 
]. Although a text may contain core CGIF, the type label Proposition is outside the syntax of core 
CGIF. 
   text = "[", [comment], "Proposition", ":", [CGname], CG,
               [endComment], "]";

Extended CGIF Grammar Rules
Extended CGIF is superset of core CGIF, and every syntactically correct sentence of core CGIF is also 
syntactically correct in extended CGIF. Its most prominent feature is the option of a type label or a type 
expression on the left side of any concept. In addition to types, extended CGIF adds the following 
features to core CGIF: 

• More options in concepts, including universal quantifiers. 

• Boolean contexts for representing the operators or, if, and iff. 

• The option of allowing concept nodes to be placed in the arc sequence of conceptual relations. 

• The ability to import text into a text. 

These extensions are designed to make sentences more concise, more readable, and more suitable as a 



target language for translations from natural languages and from other CL dialects, including CLIF. 
None of them, however, extend the expressive power of CGIF beyond the CG core, since the semantics 
of every extended feature is defined by its translation to core CGIF, whose semantics is defined by its 
translation to the abstract syntax of Common Logic. 

The following grammar rules of extended CGIF have the same definitions as the core CGIF rules of the 
same name:  arcSequence, conceptualRelation, negation, ordinaryRelation, 
text. The following grammar rules of extended CGIF don’t occur in core CGIF, or they have more 
options than the corresponding rules of core CGIF: actor, arc, boolean, CG, concept, 
eitherOr, equivalence, ifThen, typeExpression. 

An actor in extended CGIF has the option of zero or more arcs following | instead of just one arc. 
   actor = "(", [comment], ["#?"], CGname,
           arcSequence, "|", {arc}, [endComment], ")";

An arc in extended CGIF has the options of a defining coreference label and a concept in addition to a 
bound coreference label. 
   arc = [comment], (reference | "*", CGname | concept);

A boolean is either a negation or a combination of negations that represent an either-or construction, an 
if-then construction, or an equivalence. Instead of being marked with ~, the additional negations are 
represented as contexts with the type labels Either, Or, If, Then, Equiv, Equivalence, or 
Iff. 
   boolean = negation | eitherOr | ifThen | equivalence;

A concept in extended CGIF permits any combination allowed in core CGIF in the same node and it 
adds two important options:  a type field on the left side of the concept node, and a universal quantifier 
on the right. Four options are permitted in the type field:  a type expression, a bound coreference label 
prefixed with "#", a constant, or the empty string; a colon is required after a type expression, but 
optional after the other three. 
   concept = "[", [comment],
             ( (typeExpression, ":"
               | ["#?"], CGname, [":"]),
               [["@every"], "*", CGname], {reference}, CG
             | ["@every"], "*", seqmark
             ), [endComment], "]";

A conceptual graph (CG) in extended CGIF adds Boolean combinations of contexts to core CGIF. 
   CG = {concept | conceptualRelation | boolean | comment};

An either-or is a negation with a type label Either that contains zero or more negations with a type 
label Or. 
   eitherOr = "[", [comment], "Either", [":"],
                   {"[", [comment], "Or", [":"], CG, [endComment], "]"}
                   [endComment], "]";

An equivalence is a context with a type label Equivalence or Equiv that contains two contexts 
with a type label Iff. It is defined as a pair of if-then constructions, each with one of the iff-contexts 
as antecedent and the other as consequent. 



   equivalence = "[", [comment], ("Equivalence" | "Equiv"), [":"],
                     "[", [comment], "Iff", [":"], CG, [endComment], "]",
                     "[", [comment], "Iff", [":"], CG, [endComment], "]",
                      [endComment], "]";

An if-then is a negation with a type label If that contains a negation with a type label Then. 
   ifThen = "[", [comment], "If", [":"], CG,
                   "[", [comment], "Then", [":"], CG, [endComment], "]",
                   [endComment], "]";

A type expression is a lambda-expression that may be used in the type field of a concept. The symbol @ 
marks a type expression, since the Greek letter λ is not available in the ASCII subset of Unicode. 
   typeExpression = "@", "*", CGname, CG;
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