Knowledge Interchange Format: Initial Motivations

• The Situation
 • The proliferation of intelligent systems
 • Each system with its own language
KIF: Initial Motivations

• The Need
 • To share and integrate information across diverse KR frameworks
KIF: Initial Motivations

- **The Problem**
 - General solution requires $n^2 - n$ translators.
 - The number of translators needed for integration thus grows exponentially with the development of new frameworks.

*Well, *one* problem anyway…*
KIF: Initial Motivations

• The Solution: KIF
 • A single “hub” framework, an universal *interlingua* “spoken” by every framework
 • Growth of translators to frameworks is linear ($t = 2n$)
dpANS KIF: The Revised Standard Version

- A standardized framework for expressing declarative information
 - Common syntax
 - Common, well-understood semantics
 - Full first-order expressiveness
 - Required in particular for metalinguistic constructs necessary to enable semantic integration
 - Powerful additional constructs
 - Variable Polyadicity
 - "Higher-order" syntax (predicate quantifiers)
 - Type-freedom (predicates double as terms)
 - Non-first-order expressiveness (sequence variables)
dpANS KIF: The Problems

- **The Uniformity Problem**
 - Both authoritarian and impractical to impose a single syntax on users

- **The Excess Baggage Problem**
 - Additional constructs often unneeded/undesired
 - Would be onerous to require them for conformance

- **The Formalization Problem**
 - No general model theory for dpANS KIF that accommodates all of its constructs
 - No proof theory, complete or otherwise
Approach to a Solution: Simplified Common Logic

- SCL is an abstract, generalized version of KIF
- SCL and the the problems of dpANS KIF
 - Uniformity
 - Standardize *structure* rather than any particular form
 - Excess Baggage
 - *Allow* rather than *impose* additional constructs
 - Formalization
 - SCL has a rigorous, model theory
 - SCL’s first-order component has a complete proof theory
 - SCL’s non-first-order component has an infinitary proof theory for sequence variables
 - SCL’s restrictions on sequence variables still permits limited automated reasoning
SCL: Lexicons

• An SCL lexicon shall include:
 • Nonlogical symbols
 • Predicate constants
 • A distinguished elements \(Id \)
 • Individual constants
 • Function symbols (\(FnSym \))
 • Variables
 • General variables
 • Sequence variables (possibly empty)
 • An \textit{arity} function on predicate constants and function symbols
 • \(p \) is an \(n \)-place predicate constant if \(\text{arity}(p) = n \) (\(P\text{Con}_n \))
 • \(p \) is \textit{variably polyadic} otherwise (\(P\text{Con}_\omega \))
 • \(f \) is an \(n \)-place function symbol if \(\text{arity}(f) = n+1 \) (\(F\text{n}\text{Sym}_n \))
 • \(f \) is \textit{variably polyadic} otherwise (\(F\text{n}\text{Sym}_\omega \))
Features of SCL Lexicons

- Type freedom permitted (not required)
 - No assumption predicates, constants, and function symbols are pairwise disjoint
 - Overlap can be partial or complete
 - Predicate constants can serve as individual constants or function symbols

- Variable polyadicity allowed
 - $arity$ is partial

- Points in the lexical spectrum
 - *Unconstrained* lexicons (~ classic KIF)
 - $arity = \emptyset$
 - predicates = constants = function symbols
 - *Traditional first-order (TFO)* lexicons
 - $arity$ total
 - Predicates, constants, function symbols are pairwise disjoint
SCL Grammar: Terms

- Let Trm be the closure of the constants and individual variables under a term-forming operator App:

$$App : \bigcup_{n \in \mathbb{N}} ((FnSym_n \cup FnSym_\omega) \times Trm^n) \rightarrow Trm$$

- Only *structure* specified
- Concrete manifestations
 - $(\text{age-diff john (father-of john)})$
 - $\text{age-diff(john, father-of(john))}$
 - `<term>
 <fnsym>age-diff</fnsym>
 <indcon>john</indcon>
 <term>
 <fnsym>father-of</fnsym>
 <indcon>john</indcon>
 </term>
 </term>`
SCL Grammar: Predicables

• An \(n \)-place \textit{predicable} is anything that can be predicated of \(n \) arguments
 • Includes \(n \)-place and variably polyadic predicate constants and possibly general variables.
 • Inclusion of general variables allows such superficially “higher-order”, type-free constructs as:
 \[
 \text{(forall (\?x \?y \?F)}
 \text{(impl (Symmetric \?F)}
 \text{(impl (\?F \?x \?y) (\?F \?y \?x))})
 \]
 • I.e.,
 \[
 \forall F \forall x \forall y (\text{Symmetric}(F) \rightarrow (Fxy \rightarrow Fyx))
 \]
SCL Grammar: Atomic Formulas

• Let $Pred_n$ be the set of n-place predicables
• We specify only the structure of atomic formulas
• A predication operator Holds on a lexicon is a one-one function on $Pred_n \times Trm^n$
• The range of Holds is the set of atomic formulas (relative to the given lexicon)
SCL Grammar: Formulas I

- We specify only the *structure* of complex formulas via a set of operations
 - Id, Neg, Conj, Disj, Cond, EQ, UQ
- The operations are one-one and their ranges are pairwise disjoint
- Known collectively as *formula generators*
SCL Grammar: Formulas II

- The set Fla of formulas is the closure of the atomic formulas under the formula generators

 - **Id** : $Trm \times Trm \rightarrow Fla$
 - **Neg** : $Fla \rightarrow Fla$
 - **Conj** : $Fla^* \rightarrow Fla$
 - **Disj** : $Fla^* \rightarrow Fla$
 - **Cond** : $Fla \times Fla \rightarrow Fla$
 - **EQ** : $(GVar \cup (GVar \times (PCon_1 \cup PCon_\omega)))^* \times Fla \rightarrow Fla$
 - **UQ** : $(GVar \cup (GVar \times (PCon_1 \cup PCon_\omega)))^* \times Fla \rightarrow Fla$
Concrete Instances

• The abstract structure ...

\[UQ(\nu_1, \text{Cond}(\text{Holds}(\pi_1, \nu_1), \text{EQ}(\nu_2, \text{Conj}(\text{Holds}(\pi_2, \nu_2), \text{Holds}(\pi_3, \nu_1, \nu_2)))))) \]

• ...has such concrete instances as:

 (forall (?x)
 (impl (Boy ?x)
 (exists (?y)
 (and (Girl ?y)
 (Kissed ?x ?y)))))

• \(\forall x(\text{Boy}(x) \rightarrow \exists y(\text{Girl}(y) \land \text{Kissed}(x, y))) \)

• \([\text{every}^*x][\text{If}(\text{Boy} ?x)[\text{Then}:[*y](\text{Girl} ?y)(\text{Kissed} ?x ?y)]]) \)
Interpretations

- Interpretations of SCL languages consist four items:
 - A domain I of individuals
 - A domain R of relations
 - An function ext that assigns extensions to relations
 - A denotation function V that assigns elements of I to individual constants and elements of R to predicate constants and function symbols
Truth

• \textbf{Holds}(P,t_1,\ldots,t_n)\text{ is true in an interpretation just in case }\langle V(t_1),\ldots,V(t_n) \rangle \in \text{ext}(V(P))

• This semantics allows predicates that are also individual constants to hold of themselves:
 • \textbf{Holds}(P,P)\text{ is true in an interpretation just in case }\langle V(P) \rangle \in \text{ext}(V(P))

• Remaining clauses work as expected
 • Extra fiddling required for sequence variables
SCL and Traditional FOL

- SCL (in its current form) leaves the logical properties of standard first-order sentences intact.
- Properties can change only for languages that allow overlap of predicate constants and individual constants.
 - “Horrocks sentences”
 - $(\forall x)(P x \leftrightarrow \neg Q x) \land (\forall x y) x = y$
 - Inconsistent of P and Q also serve as individual constants
 - Consistent (as in TFO languages) unless that assumption is made
Translating into FOL

- Full SCL languages without sequence variables can be thought of as notational variants of first-order theories.
 - Introduce predicate Holds_n and function symbol App_n, for each n
 - Atomic sentences: $(p \ t_1 \ldots \ t_n)^* = (\text{Holds}_n \ p \ t_1 \ldots \ t_n)$
 - Function terms $(f \ t_1 \ldots \ t_n)^* = (\text{App}_n \ f \ t_1 \ldots \ t_n)$
 - $(\text{foo} \ (g \ a) \ b \ (g \ f \ (f \ a)))^* = (\text{Holds}_3 \ \text{foo} \ (\text{App}_1 \ g \ a) \ b \ (\text{App}_2 \ g \ f \ (\text{App}_1 \ f \ a)))$