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Abstract.  Systems for natural language processing (NLP) are based on some linguistic theory   
adapted to available computational technology.  Since the earliest NLP systems, a variety of linguistic, 
philosophical, logical, and computational issues have created controversies about the design choices. 
Today, advances in technology have created new options, and insights from neuroscience can help 
guide the choices.  Section 1 of this article summarizes the controversies and the shifting design 
choices influenced by different theories and technologies.  Section 2 presents neural evidence about 
connections among language areas of the brain and their implications on the design. Section 3 
summarizes psycholinguistic considerations on the design and implementation of conceptual graphs. 
Section 4 describes how the VivoMind Language Processor (VLP) implements these design options.   
In recent tests, they enabled VLP to get significantly better results than more traditional designs. 

This is a revised preprint of an article published in Biologically Inspired Cognitive Architectures 2010, 
edited by A. V. Samsonovich, K. R. Jóhannsdóttir, A. Chella, & B. Goertzel, Amsterdam: IOS Press, 
pp. 131-136.  For more recent work, see the references below to articles by Sowa from 2013 to 2016.

1. Controversies About NLP Technology
The so-called “linguistic wars” started in theoretical linguistics and spilled over into AI and 
computational linguistics. In the preface to his first book, Noam Chomsky (1957) acknowledged 
funding from projects for machine translation, but he never did any computational work himself, and 
he never cited anybody who did. Instead, Chomsky emphasized the priority of generative syntax over 
semantics in linguistics. He argued against the use of statistical methods and finite-state machines in 
that book, but they rose to prominence in computational linguistics many years later. When some of his
former students proposed generative semantics, Chomsky denounced them with such vehemence that 
they couldn’t get published in mainstream linguistics journals. But Roman Jakobson, an older linguist 
who was as eminent as Chomsky, remarked “Syntax without semantics is meaningless.” 

While Chomsky was developing his version of transformational grammar, some philosophers, linguists,
and computer scientists founded the Cambridge Language Research Unit (CLRU), which had more 
influence on AI and computational linguistics. One of the cofounders was Margaret Masterman, a 
former student of Wittgenstein’s who emphasized semantic issues, hierarchies of concept types, and the
use of thesauruses and other machine-readable resources in computational linguistics (Sowa 2006b). 
Another cofounder of CLRU was the linguist Michael Halliday, who had a much stronger influence on 
computational linguists than on linguists trained by Chomsky and his students. His orientation is 
summarized in the titles of some of his books:  Language as Social Semiotic:  The Social Interpretation
of Language and Meaning (Halliday 1978) and Construing Experience through Meaning:  A 
Language-based Approach to Cognition (Halliday & Matthiessen 1999). Although Halliday did not cite
Wittgenstein, these themes are compatible with Wittgenstein’s emphasis on the development of 
meaning through the language games people play. 



Masterman called her hierarchies semantic networks, and the term became a generic name for a variety 
of graph-based notations by philosophers (Porphyry, 3rd century AD), logicians (Peirce 1897), 
psychologists (Selz 1913, 1922), linguists (Tesnière 1959), and AI researchers (Ceccato 1961; Klein & 
Simmons 1963; Quillian 1966; Schank & Tesler 1969; Shapiro 1971; Wilks 1972; Hendrix 1975; 
Woods 1975). Their common features include an emphasis on semantic representation and a 
mathematical structure of labeled directed graphs, some with the option of grouping, nesting, chunking,
or partitioning subgraphs. These researchers and their colleagues produced a wide variety of highly 
innovative NLP systems. Unfortunately, none of the early semantic-based systems were commercially 
successful. They required large amounts of semantic information encoded in machine-readable form, 
but they lacked high-speed methods for finding the information during language analysis and 
reasoning. For examples, comparisons, and citations, see the article on semantic networks by Sowa 
(1992). 

Some of the most successful NLP systems use very little linguistic theory. One of the first was the 
Georgetown Automatic Translator (GAT), for which research was terminated in 1963. Under the name 
Systran, it became the most widely used machine-translation system in the 20th century; a version is 
still available on the web under the name Babelfish. For each pair of languages to be translated, Systran
uses a large dictionary of equivalent words and phrases. The computer processing consists of a limited 
amount of movement and adjustment to accommodate the syntactic differences between each language 
pair (Hutchins 1986). Constructing dictionaries by hand requires many person-years of effort. With the 
large volumes of documents available on the web, statistical methods for detecting and aligning 
equivalent pairs have become more widely used. Although these techniques are useful for MT, they 
don’t produce a semantic representation that can be used for reasoning. Hybrid systems that combine 
statistics with shallow parsing and templates are widely used for information extraction, but Hobbs and 
Riloff (2010) noted that such systems have reached a barrier of about 60% accuracy in recall and 
precision. 

The most sophisticated methods of reasoning are based on some version of logic. Most logic-based 
systems use a two-stage approach:  syntactic analysis to generate a parse tree, followed by semantic 
interpretation to map the parse tree to a logical form. But after forty years of research, no system based 
on that approach can read one page of a high-school textbook and use the results to answer the 
questions and solve the problems as well as a B student. Even pioneers in the logic-based methods have
begun to doubt their adequacy. Kamp (2001), for example, admitted that “the basic concepts of 
linguistics — and especially those of semantics — have to be thought through anew” and “many more 
distinctions have to be drawn than are dreamt of in current semantic theory.” 

The diversity of mechanisms associated with language is a reflection of the diversity involved in all 
aspects of cognition. One of the pioneers in AI, Marvin Minsky (1987) surveyed that diversity and 
proposed a “society” of active processes as a computational model that could simulate the complexity: 

What magical trick makes us intelligent? The trick is that there is no trick. The power of 
intelligence stems from our vast diversity, not from any single, perfect principle. Our 
species has evolved many effective although imperfect methods, and each of us 
individually develops more on our own. Eventually, very few of our actions and decisions 
come to depend on any single mechanism. Instead, they emerge from conflicts and 
negotiations among societies of processes that constantly challenge one another. (§30.8) 

This view is radically different from the assumption of a unified formal logic that cannot tolerate a 
single inconsistency. Minsky’s goal is to build a flexible, fault-tolerant system. To provide the 
motivation that drives a unified system of cognition, Minsky (2006) elaborated his Society of Mind with
the Emotion Engine. But much more detail is needed to specify how the processes can and should 
interact in an efficient computer implementation. 



2. Neural and Psycholinguistic Evidence
Many of the controversies about how to implement NLP systems are related to issues about how the 
human brain processes language. Broca’s area and Wernicke’s area were the first two areas of the 
human brain recognized as critical to language. Lesions to Broca’s area impair the ability to generate 
speech, but they cause only a minor impairment in the ability to recognize speech. Significantly, the 
impairment in recognition is caused by an inability to resolve ambiguities that depend on subtle 
syntactic features. Lesions to Wernicke’s area impair the ability to understand language, but they don’t 
impair the ability to generate syntactically correct speech. Unfortunately, that language tends to be 
grammatical nonsense whose semantic content is incoherent. 

The neural interconnections explain these observations:  Wernicke’s area is closely connected to the 
sensory projection areas for visual and auditory information. Wernicke’s area is the first to receive 
speech input and link it to the store of semantic information derived from previous sensory input. Most 
of language can be interpreted by these linkages, even if Broca’s area is damaged. Broca’s area is close 
to the motor mechanisms for producing speech. It is responsible for fine-grained motions of various 
kinds, especially the detailed syntactic and phonological nuances in language generation. Lesions in 
Broca’s area make it impossible to generate coherent syntactic structures and phonological patterns. For
language understanding, Broca’s area is not necessary to make semantic associations, but it can help 
resolve syntactic ambiguities. 

These observations suggest that the traditional methods of computational linguistics are backwards:  
they use syntactic methods, either grammar rules or statistical data, to generate a parse tree. Then they 
use semantic information to interpret the parse tree in terms of the subject matter. Some systems 
process both syntax and semantics as they step through the words of a sentence, but they usually apply 
syntactic rules before semantic rules. In either case, they devote a considerable amount of work to 
generate a parse tree, which is often unnecessary. In the brain, Wernicke’s area processes the semantics 
first. When Broca’s area checks the syntax, it makes a choice between alternate semantic interpretations
generated in Wernicke’s area. 

Although the neural evidence supports semantic-based methods for language interpretation, it also 
gives some support for Chomsky’s idea of generative syntax:  lesions in Broca’s area impair the ability 
to generate coherent speech. The clear separation of Broca’s area from Wernicke’s area also supports 
Chomsky’s claim that syntax and semantics are handled by different mechanisms. But there is no 
evidence for his claim of an innate “universal grammar.” 

Bybee (2010:196), for example, distinguished language-specific “structural knowledge” from domain-
independent cognitive features and functions, such as “chunking, categorization, the use of symbols, 
the ability to make inferences.” Those features, by themselves, are sufficient to justify labeled graphs as
a minimal representation:  words and chunks imply sets of discrete elements with some grouping into 
subsets, and categorization implies some way of marking elements in the sets. For the links that make 
sets into graphs, Bybee (2010:201) cited the Principle of Contiguity by James (1890) for both short 
links between closely related elements and cross-modal links for symbols that link dissimilar elements, 
such as a sound and an object or event. But the fact that computer programs can perform inferences on 
graphs is insufficient for preferring one graph notation over another. 

Some areas of the human brain are devoted to language, and the innate tendency of human infants to 
babble provides behavioral patterns that can be shaped to form language sounds by a kind of 
conditioning. But Bybee argues that the structural knowledge required for language need not be innate. 
General cognitive abilities are sufficient for a child to learn the syntactic and semantic patterns of 
language. Some of the commonalities found in all languages could result from the need to convert the 
internal forms to and from the linear stream of speech. Deacon (1997, 2004) argued that the cognitive 



limitations of infants would impose further constraints on the patterns common to all languages:  any 
patterns that a highly distractible infant finds hard to learn will not be preserved from one generation to 
the next. 

3. Conceptual Graphs
Conceptual graphs (CGs) are a version of semantic networks proposed by Sowa (1976) and 
standardized as a dialect of Common Logic (ISO/IEC 2007). Psycholinguistic arguments for CGs and 
the operations on them were presented in the book Conceptual Structures (Sowa 1984). For recent 
extensions and variations, see the articles by Sowa (2003, 2009, 2010). Bybee’s psycholinguistic 
evidence, which justifies the general structure of semantic networks, applies equally well to CGs. But 
graphs can be processed in an open-ended number of ways, many of which are not psychologically or 
biologically realistic. For example, the Common Logic standard defines a logical equivalence between 
CGs and predicate calculus, but few people would claim that predicate calculus is the “natural logic” of
the brain. A biologically realistic architecture should include both realistic structures and realistic 
operations on those structures. 

The semantic networks from the 1960s could not support all the operators and rules of inference of full 
first-order logic. Notations from the 1970s added ways of representing FOL or various subsets, but 
some of them were more cumbersome than predicate calculus. Remarkably, there was one graph 
notation that was simpler than the predicate calculus, and it could support full FOL with extensions to 
modal and higher-order logic. That was the notation of existential graphs (EGs), which was invented in 
1897 by the same logician who had developed the algebraic notation for predicate calculus in 1880 and 
1885:  Charles Sanders Peirce. 

Peirce’s graphs are sufficiently general that they can support the full semantics of Common Logic, 
including various proposed extensions. Furthermore, Peirce’s rules of inference do not involve any of 
the complex substitutions and transformations of predicate calculus. They perform only two kinds of 
operations:  inserting a graph or subgraph under certain conditions; or the inverse operation of deleting 
a graph or a subgraph under the inverse conditions. Professors who taught introductory logic in terms 
of Peirce’s EGs found that the students not only learned logic much more rapidly, they actually enjoyed
doing proofs. 

Peirce called EGs his “chef d’oeuvre” and claimed that the operations on EGs represented “a moving 
picture of the mind in thought.” After a detailed comparison of Peirce’s EGs to current theories about 
mental models, the psychologist Johnson-Laird (2002) agreed: 

Peirce’s existential graphs are remarkable. They establish the feasibility of a diagrammatic 
system of reasoning equivalent to the first-order predicate calculus. They anticipate the 
theory of mental models in many respects, including their iconic and symbolic components,
their eschewal of variables, and their fundamental operations of insertion and deletion. 
Much is known about the psychology of reasoning... But we still lack a comprehensive 
account of how individuals represent multiply-quantified assertions, and so the graphs may 
provide a guide to the future development of psychological theory. 

For a brief introduction to Peirce’s rules of inference and other operations on EGs and CGs, see the first
three sections of the article by Sowa (2009). As an example, Figure 17 shows how Peirce’s operations 
of insertion and deletion are used to prove a theorem, which Leibniz called the Praeclarum Theorema 
(splendid theorem), in just 7 steps starting from Peirce’s only axiom: a blank sheet of paper. Whitehead 
and Russell took 43 steps to prove the same theorem, starting from 5 nonobvious axiom schemata, one 
of which was redundant, but nobody detected the redundancy until 16 years after the Principia was 



published. 

Mathematicians and programmers continue to use their native languages to talk about the most arcane 
details of their professions. Therefore, the ability to talk and reason about logic and mathematics must 
be supported by a psychologically realistic theory of semantics. But the overwhelming majority of 
people are not mathematicians, and some tribes, such as the Pirahã, cannot even count (Everett 2005). 
Therefore, a theory that supports only the precise formal methods is unrealistic as a foundation. Peirce 
recognized that point, and he considered the operations of formal logic (induction, deduction, and 
abduction) as highly disciplined special cases of the looser and more common operations of analogy. 
For Peirce's views on analogy and case-based reasoning in relationship to cognitive science, see the 
article by Sowa (2006). 

As this discussion and the references show, the basic operations on conceptual graphs support a wide 
range of reasoning methods, ranging from loose analogies to formal logic. Pedagogically, a CG-based 
system could begin at a child-like level of vague analogies and learn to reason by the more disciplined 
formal levels by incremental steps (Sowa 2010). 

Hypothesis: 

1. Syntactic patterns of words and semantic patterns of concepts can be (computationally, 
psychologically, and neurologically) very similar. 

2. Graph structures, of which trees and strings are special cases, can support similar operations on 
patterns of words, patterns of concepts, and patterns of percepts. 

3. Biologically, percepts are the most primitive. Neural patterns of words are based on auditory 
percepts, neural patterns of concepts are based on percepts from any sensory modality, and more
abstract concepts are precept-like patterns that have few, if any, direct sensory connections. 

4. The structural operations necessary for language generation are carried out by syntactic 
operations on word patterns in or near Broca's area. 

5. The structural operations necessary for language interpretation are carried out by semantic 
operations on conceptual and perceptual patterns in or near Wernicke's area. 

6. But the interconnections between areas of the brain allow syntactic constraints to supplement 
semantic interpretation and semantic constraints to supplement syntactic generation. 

4. The VivoMind Language Processor
The VivoMind Language Processor (VLP) is a semantics-based language interpreter (Majumdar et al. 
2008, 2009). For efficiency, VLP uses the high-speed associative memory of the VivoMind Analogy 
Engine (Sowa & Majumdar 2003). Another critical component of VLP is a society of agents that was 
inspired by Minsky's book, but with computational detail added by the Flexible Modular Framework™ 
(Sowa 2002). The FMF allows multiple agents to process syntax, semantics, and pragmatics in parallel.
During language analysis, thousands of agents may be involved, most of which remain dormant until 
they are triggered by something that matches their patterns. These implementations are not only 
computationally efficient, but they produce more accurate results than either the statistical methods    
for NLP or the traditional two-stage syntactic parsing followed by semantic interpretation. 

VLP can process any kind of language: well-edited documents, unedited email, and even fragmentary 
and highly ungrammatical text messages. Since CGs can be used to represent formal logic or informal 
texts, VLP has been used to process scientific texts where precision is essential, and highly informal 
text messages, where grammar is almost nonexistent. No syntactic training is needed to switch from 



one genre to another, but semantic information is needed. That semantics can come from any source:  
structured databases or semi-automated tools for generating a proto-ontology. VLP even analyzes 
textbooks to extract background knowledge for interpreting research reports (Majumdar et al. 2008). 
For information extraction, VLP surpasses the 60% barrier for recall and precision by a margin of   
over 30%. 
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