
Cognitive Architectures
For Conceptual Structures

John F. Sowa
VivoMind Research, LLC

Abstract.  The book Conceptual Structures: Information Processing in Mind and Machine surveyed 
the state of the art in artificial intelligence and cognitive science in the early 1980s and outlined a 
cognitive architecture as a foundation for further research and development.  The basic ideas stimulated 
a broad range of research that built on and extended the original topics.  This paper reviews that 
architecture and compares it to four other cognitive architectures with their roots in the same era:  Cyc, 
Soar, Society of Mind, and Neurocognitive Networks.  The CS architecture has some overlaps with 
each of the others, but it also has some characteristic features of its own:  a foundation in Peirce’s logic 
and semiotics; a grounding of symbols in Peirce’s twin gates of perception and action; and a treatment 
of logic as a refinement and extension of more primitive mechanisms of language and reasoning.  The 
concluding section surveys the VivoMind Cognitive Architecture, which implements and extends the 
CS architecture. 
This is a slightly revised version of a paper in Proc. 19th International Conference on Conceptual Structures, 
edited by S. Andrews, S. Polovina, R. Hill, & B. Akhgar, LNAI 6828, Heidelberg: Springer, 2011, pp. 35-49. 

1. Cognitive Architectures
A cognitive architecture is a design for a computational system for simulating some aspect of human 
cognition. During the past half century, dozens of cognitive architectures have been proposed, 
implemented, and compared with human performance (Samsonovich 2010). The book Conceptual  
Structures (Sowa 1984) surveyed the state of the art in the early 1980s and proposed a design that has 
stimulated a broad range of research and development projects. After more than a quarter century, it’s 
time to review the progress in terms of recent developments in cognitive science, artificial intelligence, 
and computational linguistics. To provide perspective, it’s useful to review some related architectures 
that have also been under development for a quarter century or more:  Cyc, Soar, Society of Mind, and 
Neurocognitive Networks. 

The Cyc project, whose name comes from the stressed syllable of encyclopedia, was chartered in 1984 
as an engineering project. It placed a higher priority on computational efficiency than simulating 
psycholinguistic theories. The technical foundation was based on the previous decade of research on 
knowledge-based systems (Lenat & Feigenbaum 1987): 

• Lenat estimated that encyclopedic coverage of the common knowledge of typical high-school 
graduates would require 30,000 articles with about 30 concepts per article, for a total of about 
900,000 concepts. 

• The Japanese Electronic Dictionary Research Project (EDR) estimated that the knowledge of an 
educated speaker of several languages would require about 200K concepts represented in each 
language. 

• Marvin Minsky noted that less than 200,000 hours elapses between birth and age 21. If each 
person adds four new concepts per hour, the total would be less than a million. 



All three estimates suggested that human-level cognition could be achieved with a knowledge base of 
about a million concept definitions. At a cost of $50 per definition, Lenat and Feigenbaum believed that 
the project could be finished in one decade for $50 million and less than two person-centuries of work. 

After the first five years, Cyc had become an informal system of frames with heuristic procedures for 
processing them (Lenat & Guha 1990). But as the knowledge base grew, the dangers of contradictions, 
spurious inferences, and incompatibilities became critical. The developers decided to design a more 
structured representation with more systematic and tightly controlled procedures. Eventually, the CycL 
language and its inference engines evolved as a superset of first-order logic with extensions to support 
defaults, modality, metalanguage, and higher-order logic. An important innovation was a context 
mechanism for partitioning the knowledge base into a basic core and an open-ended collection of 
independently developed microtheories (Guha 1991). 

After the first 25 years, Cyc grew far beyond its original goals:  100 million dollars had been invested 
in 10 person-centuries of work to define 600,000 concepts by 5 million axioms organized in 6,000 
microtheories. Cyc can also access relational databases and the Semantic Web to supplement its own 
knowledge base. For some kinds of reasoning, Cyc is faster and more thorough than most humans. Yet 
Cyc is not as flexible as a child, and it can’t read, write, or speak as well as a child. It has not yet 
reached the goal of acquiring new knowledge by reading a textbook and generating rules and 
definitions in CycL. 

Unlike the engineering design for Cyc, the Soar design was based on “a unified theory of cognition” 
(Newell 1990), which evolved from four decades of earlier research in AI and cognitive science:  the 
General Problem Solver as “a program that simulates human thought” (Newell & Simon 1961) and 
production rules for simulating “human problem solving” (Newell & Simon 1972). The foundations for 
Soar are based on the earlier mechanisms:  production rules for procedural knowledge; semantic 
networks for declarative knowledge; and learning by building new units called chunks as assemblies of 
earlier units. Declarative knowledge can be stored in either long-term memory (LTM) or short-term 
(working) memory. It can represent semantic knowledge about concept definitions or episodic 
knowledge about particular instances of objects or occurrences. More recent extensions (Laird 2008) 
have added support for emotions and iconic memory for uninterpreted imagery. 

In the books Society of Mind and Emotion Engine, Minsky (1986, 2006) presented a cognitive 
architecture that he had developed in five decades of research and collaboration with students and 
colleagues. In a review of Minsky’s theories, Singh (2003) compared the Society of Mind to the Soar 
architecture: 

To the developers of Soar, the interesting question is what are the least set of basic 
mechanisms needed to support the widest range of cognitive processes. The opposing 
argument of the Society of Mind theory is that the space of cognitive processes is so broad 
that no particular set of mechanisms has any special advantage; there will always be some 
things that are easy to implement in your cognitive architecture and other things that are 
hard. Perhaps the question we should be asking is not so much how do you unify all of AI 
into one cognitive architecture, but rather, how do you get several cognitive architectures to 
work together? 

That question is the central theme of Minsky’s books, but Singh admitted that the complexity of the 
ideas and the lack of detail has discouraged implementers:  “While Soar has seen a series of 
implementations, the Society of Mind theory has not. Minsky chose to discuss many aspects of the 
theory but left many of the details for others to fill in. This, however, has been slow to happen.” 

Neurocognitive networks were developed by the linguist Sydney Lamb (1966, 1999, 2004, 2010), who 
had written a PhD dissertation on native American languages, directed an early project on machine 



translation, developed a theory of stratificational grammar, and spent five decades in studying and 
collaborating with neuroscientists. Lamb’s fundamental assumption is that all knowledge consists of 
connections in networks and all reasoning is performed by making, strengthening, or weakening 
connections. That assumption, with variations, was the basis for his linguistic theories in the 1960s and 
his most recent neurocognitive networks. Lamb avoided the symbol-grounding problem by a simple 
ploy:  he didn’t assume any symbols — the meaning of any node in a network is purely determined by 
its direct or indirect connections to sensory inputs and motor outputs. Harrison (2000) implemented 
Lamb’s hypothesis in the PureNet system and showed that it made some cognitively realistic 
predictions. 

The Conceptual Structures book discussed early work by the developers of these four systems, but the 
influences were stronger than mere citations. The first version of conceptual graphs was written in 1968 
as a term paper for Minsky’s AI course at MIT. Among the topics in that course were the General 
Problem Solver and the semantic networks by Quillian (1966), whose advisers were Newell and Simon. 
The early cognitive influences evolved from another term paper written in 1968 for a psycholinguistics 
course at Harvard taught by David McNeill (1970). The first published paper on conceptual graphs 
(Sowa 1976) was written at IBM, but influenced by the research at Stanford that led to Cyc. One of the 
early implementations of CGs (Sowa & Way 1986) used software that evolved from the dissertation by 
Heidorn (1972), whose adviser was Sydney Lamb. The goal for conceptual structures was to synthesize 
all these sources in a psychologically realistic, linguistically motivated, logically sound, and 
computationally efficient cognitive architecture. 

2. The CS Cognitive Architecture
The cognitive architecture of the Conceptual Structures book overlaps some aspects of each of the four 
architectures reviewed in Section 1. That is not surprising, since the founders of each had a strong 
influence on the book. But the CS architecture also has some unique features that originated from other 
sources: 

• The first and most important is the logic and semiotics of Charles Sanders Peirce, who has been 
called “the first philosopher of the 21st century.” His ideas and orientation have influenced the 
presentation and organization of every aspect of the book and every feature that makes it 
unique. 

• The second feature, which follows from Peirce and which is shared with Lamb, is to ground the 
symbolic aspects of cognition in the “twin gates” of perception and action. Chapter 2 begins 
with perception, and Chapter 3 treats conceptual graphs as a special case of perceptual graphs. 
The ultimate goal of all reasoning is purposive action. 

• The third, which also originates with Peirce, is to treat logic as a branch of semiotics. Although 
some sentences in language can be translated to logic, the semantic foundation is based on 
prelinguistic mechanisms shared with the higher mammals. (Sowa 2010) 

• The fourth, which originated in skepticism about AI before I ever took a course in the subject, is 
a critical outlook on the often exaggerated claims for the latest and greatest technology. It 
appears in a strong preference for Wittgenstein’s later philosophy, in which he criticized his first 
book and the assumptions by his mentors Frege and Russell. That skepticism is the basis for the 
concluding Chapter 7 on “The Limits of Conceptualization.” It also appears in later cautionary 
lectures and writings about “The Challenge of Knowledge Soup” (Sowa 2005). 

• Finally, my preference for a historical perspective on every major topic helps avoid passing 



fads. Some so-called innovations are based on ideas that are as old as Aristotle and his sources, 
many of which came, directly or indirectly, from every civilization in Asia and Africa. 

Figure 1 is a copy of Figure 2.2 in the CS book. It illustrates the hypothesis that the mechanisms of 
perception draw upon a stock of previous percepts to interpret incoming sensory icons. Those icons are 
uninterpreted input in the sensory projection areas of the cortex. The percepts are stored in LTM, which 
is also in an area of the cortex close to or perhaps identical with the same projection area. Percepts may 
be exact copies of earlier icons or parts of icons. But they could also be copies or parts of copies of a 
previous working model, which is assembled as an interpretation of the current sensory input. 

 

Figure 1. Mechanisms of Perception 

The working model in Figure 1 is either an interpretation of sensory input or a mental model that has 
the same neural representation. The following quotation explains Figure 1: 

• “The associative comparator searches for available percepts that match all or part of an 
incoming sensory icon. Attention determines which parts of a sensory icon are matched first or 
which classes of percepts are searched. 

• The assembler combines percepts from long-term memory under the guidance of schemata. 
The result is a working model that matches the sensory icons. Larger percepts assembled from 
smaller ones are added to the stock of percepts and become available for future matching by the 
associative comparator. 



• Motor mechanisms help the assembler construct a working model, and they, in turn, are directed 
by a working model that represents the goal to be achieved” (Sowa 1984:34). 

The world is a continuum, and image-like percepts can preserve that continuity. But the vocabularies of 
all languages contain a discrete set of words or morphemes. The CS book emphasized the need to 
represent and reason about both:  “To deal with language and imagery, concepts must be associated 
with both words and percepts. David Waltz (1981), who has done research on both computer vision and 
natural language processing, has been seeking a uniform underlying representation. He cited the 
following examples: 

My dog bit the mailman’s leg. 
My dachshund bit the mailman’s ear. 
My doberman bit the mailman’s ear. 

To understand the first sentence, no images are necessary. For the second one, people wonder how the 
dachshund could reach so high. But the third sentence is reasonable because a doberman is a much 
larger dog. Waltz argued that the brain must use visual and spatial mechanisms for interpreting such 
sentences. Although people may not have conscious images of the dachshund and doberman, they must 
use some sort of spatial processing.” Figure 2 introduces conceptual graphs as “a universal, language-
independent deep structure” that relates perception to language. “When a person sees a cat sitting on a 
mat, perception maps the image into a conceptual graph. A person who is bilingual in French and 
English may say, in speaking French, Je vois un chat assis sur une natte. In describing the same 
perception in English, the person may say I see a cat sitting on a mat. The same conceptual graph, 
which originates in a perceptual process, may be mapped to either language.” (Sowa 1984:38) 

 

Figure 2. Relating percepts to concepts to languages 

The assumption that the same concepts map to and from English and French words requires some 
qualification. Paradis (2009) pointed out that no two bilingual speakers have exactly the same 



experiences with both languages. Figure 2 would be approximately correct for a native English speaker 
who learned French in school by mapping French words to concepts that were acquired in English. 

Instead of assuming distinct mechanisms for propositions and mental imagery, Chapter 3 adds the 
assumption that the propositional representation in conceptual graphs is part of the same construction:  
“Perception is the process of building a working model that represents and interprets sensory input. The 
model has two components: a sensory part formed from a mosaic of percepts, each of which matches 
some aspect of the input; and a more abstract part called a conceptual graph, which describes how the 
percepts fit together to form the mosaic. Perception is based on the following mechanisms: 

• Stimulation is recorded for a fraction of a second in a form called a sensory icon. 

• The associative comparator searches long-term memory for percepts that match all or part of an 
icon. 

• The assembler puts the percepts together in a working model that forms a close approximation 
to the input. A record of the assembly is stored as a conceptual graph. 

• Conceptual mechanisms process concrete concepts that have associated percepts and abstract  
concepts that do not have any associated percepts. 

When a person sees a cat, light waves reflected from the cat are received as a sensory icon s. The 
associative comparator matches s either to a single cat percept p or to a collection of percepts, which 
are combined by the assembler into a complete image. As the assembler combines percepts, it records 
the percepts and their interconnections in a conceptual graph. In diagrams, conceptual graphs are drawn 
as linked boxes and circles. Those links represent logical associations in the brain, not the actual shapes 
of the neural excitations.” (Sowa 1984:69-70) 

The CS book cited a variety of psychological and neural evidence, which is just as valid today as it ever 
was. But much more evidence has been gathered, and the old evidence has been interpreted in new 
ways. The primary hypothesis illustrated by Figure 1 has been supported:  the mechanisms of 
perception are used to build and reason about mental models, and conceptual structures are intimately 
related to perceptual structures. That assumption has been supported by abundant evidence from both 
psychological and neural sources (Barsalou 2009). The assumption that percepts can be related to one 
another by graphs is sufficiently general that it can’t be contradicted. But the more specific assumption 
that those graphs are the same as those used for logic, language, and reasoning requires further research 
to fill in the details. The framework is sound, but the developments of the past quarter century have 
raised more issues to explore and questions to ask. 

3. Neural and Psycholinguistic Evidence
Many of the controversies about implementing NLP systems are related to issues about how the human 
brain processes language. Figure 2 shows the left hemisphere of the brain; the base drawing was copied 
from Wikipedia, and the labels come from a variety of sources, of which MacNeilage (2008) is the 
most useful. Broca’s area and Wernicke’s area were the first two areas of the human brain recognized 
as critical to language. Lesions to Broca’s area impair the ability to generate speech, but they cause 
only a minor impairment in the ability to recognize speech. Significantly, the impairment in recognition 
is caused by an inability to resolve ambiguities that depend on subtle syntactic features. Lesions to 
Wernicke’s area impair the ability to understand language, but they don’t impair the ability to generate 
syntactically correct speech. Unfortunately, that speech tends to be grammatical nonsense whose 
semantic content is incoherent. 



 

Figure 2. Language areas of the left hemisphere 

The neural interconnections explain these observations:  Wernicke’s area is closely connected to the 
sensory projection areas for visual and auditory information. Wernicke’s area is the first to receive 
speech input and link it to the store of semantic information derived from previous sensory input. Most 
of language can be interpreted by these linkages, even if Broca’s area is damaged. Broca’s area is close 
to the motor mechanisms for producing speech. It is responsible for fine-grained motions of various 
kinds, especially the detailed syntactic and phonological nuances in language generation. Lesions in 
Broca’s area make it impossible to generate coherent syntactic structures and phonological patterns. For 
language understanding, Broca’s area is not necessary to make semantic associations, but it can help 
resolve syntactic ambiguities. 

These observations support the CS hypothesis that semantic-based methods are fundamental to 
language understanding. Wernicke’s area processes semantics first, Broca’s area operates in parallel to 
check syntax, and ambiguities in one can be resolved by information from the other. Meanwhile, the 
right hemisphere interprets pragmatics:  emotion, prosody, context, metaphor, irony, and jokes, any of 
which could clarify, modify, or override syntax and semantics. Conflicts create puzzles that may require 
conscious attention (or laughter) to resolve. 

The evidence also gives some support for the claim that generative syntax is independent of semantics 
(Chomsky 1957). Lesions in Broca’s area impair the ability to generate grammatical speech, and 
lesions in Wernicke’s area cause patients to generate grammatically correct, but meaningless sentences. 
But there is no evidence for the claim of an innate “universal grammar.” Furthermore, the strong 
evidence for the importance of pragmatics suggests that Chomsky’s emphasis on competence is more 
of a distraction than an aid to understanding cognition. 



MacNeilage (2008) and Bybee (2010) argued that the structural support required for language need not 
be innate. General cognitive abilities are sufficient for a child to learn the syntactic and semantic 
patterns. Some of the commonalities found in all languages could result from the need to convert the 
internal forms to and from the linear stream of speech. In evolutionary terms, the various language 
areas have different origins, and their functions have similarities to the corresponding areas in monkeys 
and apes. As Figure 2 shows, verbs are closely associated with motor mechanisms while nouns are 
more closely connected to perception. It suggests that the syntactic structure of verbs evolved from 
their association with the corresponding actions, but nouns have primarily semantic connections. 
Deacon (1997, 2004) argued that the cognitive limitations of infants would impose further constraints 
on the patterns common to all languages:  any patterns that a highly distractible infant finds hard to 
learn will not be preserved from one generation to the next. 

 

Figure 3. Neurocognitive network for the word fork 
Figure 3 overlays the base drawing of Figure 2 with a network of connections for the word fork as 
proposed by Lamb (2010). The node labeled C represents the concept of a fork. It occurs in the parietal 
lobe, which is closely linked to the primary projection areas for all the sensory modalities. For the 
image of a fork, C is connected to node V, which has links to percepts for the parts and features of a 
fork in the visual cortex (occipital lobe). For the tactile sensation of a fork, C links to node T in the 
sensory area for input from the hand. For the motor schemata for manipulating a fork, C links to node 
M in the motor area for the hand. For the phonology for recognizing the word fork, C links to node PR 
in Wernicke’s area. Finally, PR is linked to node PA for the sound /fork/ in the primary auditory cortex 
and to node PP in Broca’s area for producing the sound. 

The network in Figure 3 represents semantic or metalevel information about the links from a concept 
node C to associated sensory, motor, and verbal nodes. It shows how Lamb solves the symbol-
grounding problem. Similar networks can link instance nodes to type nodes to represent episodic 
information about particular people, places, things, and events. Lamb’s networks have many 
similarities to other versions of semantic networks, and they could be represented as conceptual graphs. 
CGs do have labels on the nodes, but those labels could be considered internal indexes that identify 
type nodes in Lamb’s networks. Those networks, however, cannot express all the logical options of 
CGs, CycL, and other AI systems. Only one additional feature is needed to support them, and Peirce 
showed how. 



4. Peirce’s Logic and Semiotics
To support reasoning at the human level or at the level of Cyc and other engineering systems, a 
cognitive architecture requires the ability to express the logical operators used in ordinary language. 
Following are some sentences spoken by a child named Laura at age three (Limber 1973): 

Here’s a seat. It must be mine if it’s a little one. 
I want this doll because she’s big. 
When I was a little girl I could go “geek-geek” like that. But now I can go “this is a chair.”

In these sentences, Laura correctly expressed possibility, necessity, tenses, indexicals, conditionals, 
causality, quotations, and metalanguage about her own language at different stages of life. She had a 
fluent command of a larger subset of intensional logic than Richard Montague formalized, but it’s 
doubtful that her mental models would involve infinite families of possible worlds. 

Lamb’s neurocognitive networks can’t express those sentences, but Peirce discovered a method for 
extending similar networks to express all of them. In 1885, he had invented the algebraic notation for 
predicate calculus and used it to express both first-order and higher-order logic. But he also 
experimented with graph notations to find a simpler way to express “the atoms and molecules of logic.” 
His first version, called relational graphs, could express relations, conjunctions, and the existential 
quantifier. Following is a relational graph for the sentence A cat is on a mat:  Cat—On—Mat.

In this notation, a bar by itself represents existence. The strings Cat, On, and Mat represent relations. 
In combination, the graph above says that there exists something, it’s a cat, it’s on something, and the 
thing it’s on is a mat. Peirce invented this notation in 1883, but he couldn’t find a systematic way to 
express all the formulas he could state in the algebraic notation. In 1897, he finally discovered a simple 
method:  use an oval to enclose any graph or part of a graph that is negated. Peirce coined the term 
existential graph for relational graphs with the option of using ovals to negate any part. Figure 4 shows 
some examples. 

 

Figure 4. Four existential graphs about pet cats. 
The first graph on the left of Figure 4 says that some cat is a pet. The second graph is completely 
contained in a shaded oval, which negates the entire statement. It says that no cat is a pet. The third 
graph negates just the pet relation. It says that some cat is not a pet. The fourth graph negates the third 
graph. The simplest way to negate a sentence is to put the phrase “It is false that” in front of it: It is  
false that there exists a cat which is not a pet. But that combination of two negations can be read in 
much more natural ways:  with a conditional, If there is a cat, then it is a pet; or with a universal 
quantifier, Every cat is a pet. Both readings are logically equivalent. 

In general, Peirce’s relational graphs, when combined with ovals for negation, have the full expressive 
power of first-order logic. Peirce later experimented with other features to express higher-order logic, 
modal logic, and metalanguage. With these extensions, existential graphs (EGs) have the full 
expressive power of CycL and most other AI logics. The CS book adopted Peirce’s EGs as the 
foundation for conceptual graphs. In effect, CGs are typed versions of EGs with some extra features. 
But every CG can be translated to a logically equivalent EG. For an introduction to EGs, CGs, and their 
rules of inference, see the article by Sowa (2009); for extensions to metalanguage and modality, see 
Sowa (2003, 2006). 



Even more important than the notation, the EG rules of inference do not require the complex 
substitutions and transformations of predicate calculus. They perform only two kinds of operations:  
inserting a graph or subgraph under certain conditions; or the inverse operation of deleting a graph or a 
subgraph under opposite conditions. These rules are sufficiently simple that they could be implemented 
on networks like Lamb’s with only the operations of making, strengthening, or weakening connections. 

Peirce called EGs his “chef d’oeuvre” and claimed that the rules of inference for EGs represent “a 
moving picture of the mind in thought.” After a detailed comparison of Peirce’s EGs to current theories 
about mental models, the psychologist Johnson-Laird (2002) agreed: 

Peirce’s existential graphs are remarkable. They establish the feasibility of a diagrammatic 
system of reasoning equivalent to the first-order predicate calculus. They anticipate the 
theory of mental models in many respects, including their iconic and symbolic components, 
their eschewal of variables, and their fundamental operations of insertion and deletion. 
Much is known about the psychology of reasoning... But we still lack a comprehensive 
account of how individuals represent multiply-quantified assertions, and so the graphs may 
provide a guide to the future development of psychological theory. 

Although Peirce is best known for his work on logic, he incorporated logic in a much broader theory of 
signs that subsumes all possible cognitive architectures within a common framework. Every thought, 
feeling, or perception is a sign. Semiotics includes neural networks because every signal that passes 
between neurons or within neurons is a sign. Even a single bacterium is a semiotic processor when it 
swims upstream in following a glucose gradient. But the most fundamental semiotic process in any life 
form is the act of reproducing itself by interpreting signs called DNA. Figure 5 illustrates the evolution 
of cognitive systems according to the sophistication of their semiotic abilities. 

 

Figure 5. Evolution of cognition 

The cognitive architectures of the animals at each stage of Figure 5 build on and extend the capabilities 
of the simpler stages. The worms at the top have rudimentary sensory and motor mechanisms 
connected by ganglia with a small number of neurons. A neural net that connects stimulus to response 
with just a few intermediate layers might be an adequate model. The fish brain is tiny compared to 
mammals, but it supports rich sensory and motor mechanisms. At the next stage, mammals have a 
cerebral cortex with distinct projection areas for each of the sensory and motor systems. It can support 
networks with analogies for case-based learning and reasoning. The cat playing with a ball of yarn is 



practicing hunting skills with a mouse analog. At the human level, Sherlock Holmes is famous for his 
ability at induction, abduction, and deduction. Peirce distinguished those three ways of using logic and 
observed that each of them may be classified as a disciplined special case of analogy. 

5. VivoMind Cognitive Architecture
The single most important feature of the VivoMind Cognitive Architecture (VCA) is the high-speed 
Cognitive Memory™. The first version, implemented in the VivoMind Analogy Engine (VAE), was 
invented by Arun Majumdar to support the associative comparator illustrated in Figure 1. Another 
feature, which was inspired by Minsky’s Society of Mind, is the distribution of intelligent processing 
among heterogeneous agents that communicate by passing messages in the Flexible Modular 
Framework™ (Sowa 2002). Research on bilingualism supports neurofunctional modularity for human 
cognition (Paradis 2009). Practical experience on multithreaded systems with multiple CPUs has 
demonstrated the flexibility and scalability of a society of distributed heterogeneous agents: 

• Asynchronous message passing for control and communication. 

• Conceptual graphs for representing knowledge in the messages. 

• Language understanding as a knowledge-based perceptual process. 

• Analogies for rapidly accessing large volumes of knowledge of any kind. 

Learning occurs at every step:  perception and reasoning generate new conceptual graphs; analogies 
assimilate the CGs into Cognitive Memory™ for future use. 

The VivoMind Language Processor (VLP) is a semantics-based language interpreter, which uses VAE 
as a high-speed associative memory and a society of agents for processing syntax, semantics, and 
pragmatics in parallel (Sowa & Majumdar 2003; Majumdar et al. 2008). During language analysis, 
thousands of agents may be involved, most of which remain dormant until they are triggered by 
something that matches their patterns. This architecture is not only computationally efficient, but it 
produces more accurate results than any single algorithm for NLP, either rule based or statistical. 

With changing constraints on the permissible pattern matching, a general-purpose analogy engine can 
perform any combination of informal analogies or formal deduction, induction, and abduction. At the 
neat extreme, conceptual graphs have the model-theoretic semantics of Common Logic (ISO/IEC 
24707), and VAE can find matching graphs that satisfy the strict constraints of unification. At the 
scruffy extreme, CGs can represent Schank’s conceptual dependencies, scripts, MOPs, and TOPs. VAE 
can support case-based reasoning (Schank 1982) or any heuristics used with semantic networks. 
Multiple reasoning methods — neat, scruffy, and statistical — support combinations of heterogeneous 
theories, encodings, and algorithms that are rarely exploited in AI. 

The Structure-Mapping Engine (SME) pioneered a wide range of methods for using analogies 
(Falkenhainer et al. 1989; Lovett et al. 2010). But SME takes N-cubed time to find analogies in a 
knowledge base with N options. For better performance, conventional search engines can reduce the 
options, but they are based on an unordered bag of words or other labels. Methods that ignore the graph 
structure cannot find graphs with similar structure but different labels, and they find too many graphs 
with the same labels in different structures. 

Organic chemists developed some of the fastest algorithms for representing large labeled graphs and 
efficiently finding graphs with similar structure and labels. Chemical graphs have fewer types of labels 
and links than conceptual graphs, but they have many similarities. Among them are frequently 
occurring subgraphs, such as a benzene ring or a methyl group, which can be defined and encoded as 



single types. Algorithms designed for chemical graphs (Levinson & Ellis 1992) were used in the first 
high-speed method for encoding, storing, and retrieving CGs in a generalization hierarchy. More recent 
algorithms encode and store millions of chemical graphs in a database and find similar graphs in 
logarithmic time (Rhodes et al. 2007). By using a measure of graph similarity and locality-sensitive 
hashing, their software can retrieve a set of similar graphs with each search. 

The original version of VAE used algorithms related to those for chemical graphs. More recent 
variations have led to a family of algorithms that encode a graph in a Cognitive Signature™ that 
preserves both the structure and the ontology. The encoding time is polynomial in the size of a graph. 
With a semantic distance measure based on both the structure of the graphs and an ontology of their 
labels, locality-sensitive hashing can retrieve a set of similar graphs in log(N) time, where N is the total 
number of graphs in the knowledge base. With this speed, VAE can find analogies in a knowledge base 
of any size without requiring a search engine as a preliminary filter. For examples of applications, see 
the slides by Sowa and Majumdar (2009). 

The distributed processing among heterogeneous agents supports Peirce’s cycle of pragmatism, as 
illustrated in Figure 6. That cycle relates perception to action by repeated steps of induction, abduction, 
reasoning, and testing. Each step can be performed by an application of analogy or by a wide variety of 
specialized algorithms. 

 

Figure 6. Cycle of Pragmatism 

The cycle of pragmatism shows how the VivoMind architecture brings order out of a potential chaos 
(or Pandemonium). The labels on the arrows suggest the open-ended variety of heterogeneous 
algorithms, each performed by one or more agents. During the cycle, the details of the internal 



processing by any agent is irrelevant to other agents. It could be neat, scruffy, statistical, or biologically 
inspired. The only requirement is the conventions on the interface to the FMF. An agent that uses a 
different interface could be enclosed in a wrapper. The overall system is fail soft:  a failing agent that 
doesn’t respond to messages is automatically replaced by another agent that can answer the same 
messages, but perhaps in a very different way. Agents that consistently produce more useful results are 
rewarded with more time and space resources. Agents that are useless for one application might be 
rewarded in another application for which their talents are appropriate. 

The society of agents can have subsocieties that traverse the cycle of pragmatism at different speeds. 
Societies devoted to low-level perception and action may traverse each cycle in milliseconds. Societies 
for reasoning and planning may take seconds or minutes. A society for complex research might take 
hours, days, or even years. 
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