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Conceptual  Graphs  for  a  Data  Base  Interface 

Abstract: A data  base  system  that  supports natural  language queries is not really natural if it requires the  user  to know how the  data 
are  represented.  This  paper defines  a  formalism, called conceptual graphs,  that  can  describe  data according to  the user’s view and  ac- 
cess  data  according  to  the system’s view. In addition, the  graphs  can  represent functional dependencies in the  data  base  and  support in- 
ferences  and  computations  that  are not  explicit in the initial query. 

Introduction 
Historically, data  base  systems evolved as generalized 
access methods. They  addressed  the  narrow issue of 
enabling independent programs to  cooperate in access- 
ing the  same  data.  As a result, most data  base  systems 
emphasize  the  questions of how data may be  stored  or 
accessed,  but they  ignore the  questions of what  the  data 
base  means  to  the people  who use it or how it relates  to 
the overall operations of a business  enterprise. When a 
business  converts from  a  manual system  to a computer- 
ized system,  the  computer  cannot  adapt itself to  the  users’ 
view of the world, and  the people have  to learn strange 
conventions  to  access  their familiar data. 

Before a computer  can  adapt itself to a  person’s world 
view, that view must  be  described in a  formalism that 
the  computer  can  process.  The  conceptual graphs de- 
fined in this paper  provide a formal  notation that  serves 
as  an intermediary between  the human and  the  com- 
puter: the  graphs  describe  the meaning of data according 
to  the user’s  view,  but  they are  also  associated with  pro- 
cedures  that  can  access  the  data  according  to  the ma- 
chine view. When a person  asks a question in ordinary 
English or  other natural  language, the system would 
translate  the  question  into a  conceptual graph.  Then  the 
system could search  for  other  graphs  that  describe  the 
data  base  and  are relevant to  the original question. When 
it finds such  graphs, it can  use them to  access  the  data 
and compute  the  answer. 

Conceptual  graphs  are not  intended as a  means of 
storing data but as a means of describing data  and  the 
interrelationships. As a method of formal description, 
they have  three principal advantages:  First, they can 
support a direct mapping onto a relational data  base  as 
defined by Codd [ 11 ; second, they  can  be  used as a 
semantic basis for natural  language;  and  third,  they can 

been  shown  by the TORUS system  at  the  University of 
Toronto [2], which uses a representation similar to  the 
one developed here.  The  second point  has  been  investi- 
gated in a growing body of research in computational 
linguistics and artificial intelligence; for a survey of that 
work,  see  the  article by Heidorn [3] and the collections 
of papers edited by Schank and Colby [4] or Bobrow 
and Collins [ 5 ] .  The third  point is the principal topic of 
this  paper: Besides representing logical relations in a 
conceptual graph, the system  must use  the  graphs  to per- 
form  inferences that  answer  the original question. 

Since relational data  bases  have a  simpler logical 
structure than network  or hierarchical systems, they are 
an  important first step toward simplifying the user’s in- 
terface.  Relations are a good interface for a  professional 
programmer, and they can  also be  used by nonprogram- 
mers who are familiar with the  data  base  conventions. 
Several  query languages, such  as SEQUEL [6], SQUARE 

[7], and Query-by-Example [8],  have been  designed for 
nonprogrammers  who have been  trained in using the 
data base.  But  casual users  and  even programmers  who 
had not learned the  conventions would require a  consid- 
erable period of training  before  they could ask a  ques- 
tion. 

Figure 1 shows a sample  relation in a form  that might 
be  presented  to a user of a  relational query language. 
The  name of the relation is HIRE, and  its  domains  are 
named EMPLOYEE,  MANAGER,  and  DATE.  Under 
the domain  headings are  the n-tuples for which the rela- 
tion is  true. A person familiar  with the real world system 
could  probably guess  that  the  three domains represent 
an employee, the manager  who originally hired the em- 
ployee,  and the  date  the employee  was  hired. But there 
is no information in the relation that  excludes  other in- 

Support automatic  inferences  to  compute relationships terpretations,  such  as,  for  each manger, the  date he first 
336 that  are  not explicitly mentioned. The first point has became a  manger and  the first employee  he  hired.  For a 
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complex data  base with dozens of relations, few users 
can  correctly guess  the meaning of every domain in 
every relation. 

The meaning of a relation is called its intension, and 
the  set of all the n-tuples stored in the  data  base is called 
its  extension. The  question of representing extensions, 
accessing them,  and modifying them is the familiar one 
that all data  base  systems  address.  The  question of rep- 
resenting intensions,  however,  tends  to be  ignored, 
largely because  adequate formalisms and  techniques  for 
handling them have  not been  available. For a data  base 
system,  the  three principal kinds of intensional  informa- 
tion are  the functional dependencies,  the domain roles, 
and  the  constraints  on domain  values. In a data  base  re- 
lation, functional dependencies indicate which domains 
are permissible keys  and which domains  are  dependent 
upon the  keys;  for  the relation in Fig. I ,  EMPLOYEE is 
the key domain,  and  the domains MANAGER  and 
DATE  are  determined when EMPLOYEE is specified. 
The domain  roles  indicate how the  domains  are  related; 
for Fig. 1 ,  the  MANGER of each n-tuple  performs an 
act,  HIRE,  the  EMPLOYEE is the  one who is hired, 
and  the DATE is when  the particular act  occurred.  The 
constraints indicate  permissible values;  for Fig. 1, they 
would specify the  expected form of a name or date,  the 
requirement that  no  date of hire may precede  the  date 
the  company was founded,  and  the  constraint  that  no 
person may hire himself. 

Besides  representing  intensions, the system must  use 
them to provide  a more natural  interface and  to  check 
the plausibility of new  information that is being added. 
This  paper defines conceptual  graphs  as  an intensional 
formalism and  shows how they might be  used to meet 
the following requirements: 

Familiar conventions  A  person  who  knows the forms 
and procedures of a  business enterprise should  be 
able  to  ask  questions  about it without having to learn 
the peculiarities of the  computer system. 
Automatic inference The  system should  infer  rela- 
tions that  are  not  stored explicitly in the  data  base. 
Naturalness  The intensional  formalism  should  be 
close enough to  the semantics of natural  language to 
support  convenient dialogue and prompting  facilities. 
Semuntic integrity The domain constraints should help 
to  keep  the  data  base  an  accurate reflection of the 
real world. 

These  are  requirements for the user's interface;  the 
physical  implementation  must also satisfy other  criteria, 
such as  speed  and reliability. By separating the  concep- 
tual graphs  that  describe  the meaning of data from the 
system  that  stores  and  accesses  data,  the  two problems 
can be addressed independently. Efficient storage  alloca- 
tion or means of recovery  after a system  crash  must be 

MANAGER 
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I Tom Jones 

Mary Smith 8/8/75 

Figure 1 The HIRE relation. 
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Figure 2 Examples of concepts. 

supported by the underlying data  base  system; what the 
data mean should  be described by an intensional  formal- 
ism at  the interface to  the  data. 

To meet these  requirements,  conceptual  graphs  are a 
network of concepts  and  conceptual relations that  de- 
scribe  the domain  roles. Certain  conceptual  graphs,  the 
conceptual  schemata  and working graphs,  have a super- 
imposed network of functional dependencies  that  are 
mapped to  the  data  base. To answer a user's  question, 
the system assembles a working graph  that  has  the 
appropriate domain  roles together with functional depen- 
dencies  that  determine  the answer. The  next several 
sections of this paper define these  structures formally, 
present  an algorithm for computing the working graphs, 
and give an  example of how the  system would process a 
typical question. 

Conceptual graphs 
In  the  theory of conceptual  graphs,  the basic  primitive is 
called  a concept.  It is represented by a box  containing  a 
sort label, which identifies the  type of concept.  For read- 
ability, sort labels are written as English words in upper 
case  letters,  but they  could just  as well be numbers or 
computer  addresses. 

Formally, a concept is an undefined primitive. Infor- 
mally, it is a  symbol that could represent anything that 
anyone might ever think of-an  entity,  action, or proper- 
ty in the real  world, an  abstraction,  fantasy,  or mathe- 
matical function.  Some  concepts  are  shown in Fig. 2. 
For  those  aspects of the world recorded in the  data  base, 
at  least  one  concept is defined for  every  data  base do- 
main. Some  concepts  are more  general than  others:  the 
sort label PERSON  marks a more general concept  than 
EMPLOYEE,  and  EMPLOYEE is more general than 
MANAGER.  To  represent  the levels of generality,  the 
sort labels are  ordered. 

Definition There is a set S whose  members  are called 
sort  labels, with a partial  ordering 5 defined upon S. 
The function sort  maps  concepts  into  sort labels.  If a 
and b are  concepts  for which sort ( a )  5 sort ( b ) ,  then 
a is said to be a subsort of 6. 337 
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Figure 3 Examples of conceptual relations 

BOY WALK 

IDEA SLEEP 

(b)  

Figure 4 The conceptual graph ( a )  is well-formed  while the 
graph at (b )  is ill-formed. 

HIRE PERSON 

subsorts: LION,  TIGER, and JAGUAR  are all com- 
mon subsorts of FELINE and  WILD-ANIMAL.  Not 
all pairs of concepts  have common subsorts:  NUMBER 
and  EMPLOYEE  have  no common subsort [ 9 ] .  

Connections  between  concepts  are  represented by 
conceptual relations, which are written as labeled  circles 
having one  or  more links. The  links  are numbered  con- 
secutively, starting with 1 ; for  the special case of dyadic 
conceptual  relations,  an  arrowhead pointing towards  the 
circle  indicates link 1, and  an  arrowhead pointing away 
indicates link 2. 

The  examples in Fig. 3 show  some  common  concep- 
tual relations. The relations AGNT and PTNT have 
been adapted  from  case grammar [ 101: AGNT  (or  
AGENT) links  a concept representing an  animate  entity 
to a concept of an action that  the  entity is performing; 
PTNT  (or  PATIENT) links an  action  to  an  entity  that 
is being acted upon.  Besides linguistic cases, conceptual 
relations  can represent mathematical or computational 
notions: RES  (or  RESULT) links a concept  represent- 
ing a function to a concept representing the result of the 

conceptual relations has  no formal significance in the 
DATE HIRE EMPLOYEE function.  As  with sort labels, the  choice of labels for 

Figure 5 Two well-formed conceptual graphs theory,  but a readable  set should be  chosen  for a  given 
application [ 1 1 1. 
Definition A conceptual  graph is a finite, connected, 

Since a concept is not a set,  one  concept  cannot be  a 
subset of another  concept.  Yet  subsorts  and  subsets  are 
closely  related: If u is a subsort of b, as  the  concept 
EMPLOYEE is a subsort of the  concept  PERSON, 
then the  set of all things to which a applies is a subset of 

undirected, bipartite  graph  with nodes of one  type called 
concepts and  nodes of the  other  type called conceptuul 
relations. A  conceptual  graph may consist of a single 
concept,  but it cannot  have  conceptual relations  with 
unattached links. 

the things to which b applies. Since a concept is an in- In  the  operations defined upon  conceptual  graphs, 
tensional symbol,  not  an  extensional  set of things, the links may be attached  or  detached from concepts, but 
principle of extensionality does not  hold: Two  concepts  they  are permanently  bound to conceptual  relations. 
with different sort labels are  distinct,  even if they  repre-  Only dyadic  conceptual relations are  used in the exam- 
sent  exactly  the  same things in the  data base. Even if ples in this paper,  but  the definitions and  theorems allow 
every  person mentioned in the  data  base  happens  to be  arbitrarily many links. 
an  employee,  the meaning of employee includes  addi- 
tional  relationships beyond  those  that  are  true  for per- 
sons in general.  Following are some examples of the 
ordering of sort labels: 

Definition A conceptual relation has a certain  number of 
links, which may be  attached  to  concepts. If a concep- 
tual relation has n links for  some integer n 3 1 ,  it is 
called n-udic, and its  links are numbered 1 , .  . ., n. 

MANAGER < EMPLOYEE < PERSON 
< ANIMAL < ENTITY 

HIRE < ACT < EVENT,  DATE < TIME 

Formation rules 
Not all combinations of concepts  and conceptual rela- 
tions  are meaningful; the  data  base designer must  have a 

Ordering symbols other than 5 are defined in the ob- way of declaring certain combinations  well-formed  and 
vious way; i.e., x < y if and only if x 5  y and x # y .  other combinations ill-formed. Figure 4 (a) shows a well- 

Dejinition The  concept c is called a common subsort of 
formed conceptual  graph, which represents  the  phrase 

the  concepts a and b if sort ( c )  5 sort ( a )  and sort ( c )  “boy walking.” The  graph in Fig. 4 (b )  is an ill-formed 

5 sort ( b ) .  combination, taken from  Chomsky’s famous example 
“Colorless  green  ideas sleep  furiously.” 

FIXED-BINARY is a  common subsort of FIXED Well-formed conceptual  graphs  are like well-formed 
338 and  BINARY.  Two  concepts may have many common  formulas in symbolic logic or grammatical sentences in 
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English. They  are  not necessarily true  or  even plausible, 
but  they rule  out  some nonsensical  combinations. To 
distinguish the well-formed conceptual  graphs,  there  are 
formation  rules that  generate all of the well-formed 
graphs  but none of the ill-formed ones.  The  data  base 
designer must prime the  system with a starting set of 
conceptual  graphs, which are all well-formed by defini- 
tion. Every  other well-formed graph is generated by  re- 
peated  applications of four basic  rules. 

Assumption The  system  has a collection of conceptual 
graphs  that  are defined as well-formed. Every graph con- 
sisting of a single concept is well-formed. All other well- 
formed conceptual  graphs  are obtained  by  repeated 
application of the following rules: 

1. Copy An  exact  copy of any well-formed conceptual 
graph is well-formed. 

2. Detach All connected graphs that remain  when  any 
conceptual relation is removed  from a well-formed 
conceptual graph are also well-formed. 

3. Restrict If a is a concept in a well-formed conceptual 
graph u, then for  any  sort label s 5 sort ( a ) ,  the graph 
obtained by substituting s for  the  sort label of a is 
well-formed. 

4. Join Let a be  a concept in a well-formed conceptual 
graph u and b be a concept in a well-formed concep- 
tual graph w, where u and w may  be the  same  graph. 
Then if sort ( a )  = sort ( b )  , u and w may be joined  to 
form a well-formed conceptual graph u by deleting a 
from u and  attaching  to b all the links of conceptual 
relations in u that had  previously  been attached  to a. 

To illustrate the formation rules, Fig. 5 presents  two 
conceptual  graphs  that  are  assumed  to  be well-formed. 
The first graph may be read  as  “A manager hiring a cer- 
tain person,”  and  the second as  “An employee being 
hired at a certain  date.” 

Since  both  graphs in Fig. 5 have a concept with  sort 
label HIRE, they may be  joined by deleting one of the 
concepts with label HIRE and attaching the  two  dan- 
gling links to  the corresponding concept in the  other 
graph. This  operation  produces  the graph in Fig. 6. 

Since  two  concepts can  only  be joined when  they have 
identical sort labels, the  sort label PERSON in Fig. 6 
would have  to be restricted  to  EMPLOYEE,  as in Fig. 
7 ,  before it could be  joined  to  the  other  concept labeled 
EMPLOYEE. 

Since Fig. 7 now has  two  concepts with identical sort 
labels, they may be joined by deleting one of them and 
attaching  the dangling link to  the  other one. 

According to  the  detach rule, one of the  two  copies of 
PTNT in Fig. 8 may be  removed  to  form  the graph in 
Fig. 9.  This graph may be read “A manager hiring an 
employee  at a certain  date.” 

JULY 1976 

HIRE PERSON 

/\ 

Figure 6 A join of the graphs in Fig. 5 

Figure 7 A restriction of the graph  in Fig. 6. 

Figure 8 A join of two  concepts in  the same graph. 

Figure 9 Final  graph obtained by detachment. 

With an  appropriate  set of starting graphs,  the  forma- 
tion rules generate  graphs  that may be considered 
“grammatically correct.” But grammar rules  are not 
rules of inference:  formation  rules generate syntactically 
well-formed combinations;  inference  rules  generate 
combinations that  are  true if the  assumptions  are  true.  In 
defining the rules of a formal system, a logician has vari- 
ous options for assigning a construct  either  to  the  forma- 
tion  rules or  to  the rules of inference. Sorted logic 
[ 12, 131 differs from  the  standard  predicate calculus  by 
incorporating sorts  into  the formation rules;  as a result, 
it often has simpler  formulas and  shorter proofs. The 
sort labels on  concepts  make  the formation rules more 339 
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PHYSICAL-BEING 

ANIMAL  SLEEP 

Figure 10 Sample  starting  graphs. 

COLOR SLEEP 

Figure 11 Graph  derived from Fig. I O .  

complex,  but  they sharply reduce  the  number of alterna- 
tives to be  considered in performing  inferences. 

To  show how the formation  rules  impose constraints 
on a derivation,  take  the  two  graphs in Fig. 10 as a start- 
ing set.  Since  ANIMAL < PHYSICAL-BEING,  the 
sort label PHYSICAL-BEING in the first  graph can  be 
restricted to  ANIMAL.  Thep  the  two  graphs  can  be 
joined  on  ANIMAL  to  form  the graph in Fig. 1 1 .  

This graph can be further  restricted  to form graphs  for 
the  sentences  “A brown beaver  sleeps”  or  “A purple 
cow sleeps.”  But  since IDEA is not a subsort of ANI- 
MAL  nor of PHYSICAL-BEING,  there  is  no way of 
deriving “A  green idea  sleeps.” The formation  rules thus 
eliminate  nonsensical  things like green ideas,  but  they 
allow  conceivable, nonexistent things like purple cows. 
The  rules  for handling subsorts impose the  same kinds 
of constraints  as  the  semantic  markers used by Katz  and 
Fodor [ 141. The partial  ordering of subsorts,  however, 
is more  general than semantic markers: besides  binary 
distinctions, a partial  ordering may include arbitrary 
trees  and lattices. 

The rules presented so far place no  restrictions  upon 
the starting set of well-formed conceptual  graphs:  any 
combination of symbols that  anyone might ever think of 
could be  represented  as a conceptual graph. In setting 
up  a query facility, the  data  base designer would select a 
set of concepts  for all the  domains in the  data  base,  aux- 
iliary concepts  for real world characteristics related to 
those  domains,  and  other  concepts  for functions that 
might be applied to  values in the domains. Since few 
data  base  designers  are trained  linguists,  a practical sys- 
tem would have  to  be primed  with a basic  set of con- 
cepts  for common  English words, a set of conceptual 
relations for linguistic cases  and mathematical relations, 
and a set of tools  and  questionnaires  for automating the 

Derived formation rules 
The basic  formation  rules operate  on  one  concept  at a 
time; derived  formation  rules are  sequences of basic 
operations  that  do a  complex  derivation in one  step. 
There  are two reasons  for having the derived  rules:  the- 
oretically,  they can simplify the definitions and  shorten 
the  proofs; and  practically, the combined operations can 
eliminate  intermediate computations  and improve sys- 
tem  performance. The first derived rule is projection, 
which extracts a subgraph from a conceptual  graph and 
then  restricts  some of the  concepts in it. Another  de- 
rived  rule is  the  join of two graphs  on a common  projec- 
tion, which  allows the  graphs in Fig. 5 to form the graph 
in Fig. 9 in a single step.  A  special case of this  rule is 
maximal join,  where  the common  projection is as large 
as possible; maximal joins  are  important in the algorithm 
for answering a data  base  query. 

Definition A well-formed conceptual graph u is a projec- 
tion of a well-formed conceptual  graph w if u can be  de- 
rived from w by zero  or more  applications of detachment 
and  zero  or more  applications of restriction,  but  no ap- 
plication of join. 

Each  detachment  reduces  the  size of the resulting 
graph by at  least  one  conceptual relation. I t  may also 
cause  the graph to become disconnected,  and  thereby 
create several well-formed conceptual graphs,  each with 
fewer  concepts  and conceptual  relations than  the origi- 
nal. Each restriction leaves  the number of concepts  and 
relations unchanged,  but it makes  the graph more spe- 
cialized. None of the formation  rules allow a restriction 
to  be  undone  to  return to the original, more general 
graph. 

Theorem If u is a connected subgraph of a well-formed 
conceptual graph w, then u is a projection of w that  can 
be  derived  from w solely by the  rule of detachment. 

Proof Apply  the rule of detachment  to  each conceptual 
relation of w that is not in u. All the graphs that remain 
are, by definition, projections of w. Since u is connected 
and none of its  conceptual relations were  detached, u 
must  be wholly contained within one of those projec- 
tions. That projection cannot  contain any conceptual 
relation not in u since all of them were  detached.  Fur- 
thermore, it cannot contain  any concept not in u since 
each  such  concept would have  to  be  attached  to a concept 
of u by some conceptual  relation not in u. Therefore,  that 
projection  must  be u. 

task of defining conceptual graphs. Much  work remains If two isomorphic graphs  were  drawn carefully on 
to be done  before  the definition of a language can  be transparent plastic sheets,  one graph  could  be  overlaid 
reduced  to filling out a questionnaire, but the  purpose of on  the  other with a  perfect match: all concepts,  concep- 
this paper is to  present a formalism that may  help to sys- tual  relations, and links would line  up exactly.  The  next 

340 tematize  that  job.  theorem  shows  that a projection of a graph can  be over- 
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laid on some subgraph of the original; the matching con- 
ceptual  relations would be  identical, but some or all of 
the  concepts in the original would correspond  to sub- 
sorts in the projection. 

Theorem If u is a  projection of w, then there is an iso- 
morphism + that  maps u onto a connected subgraph w' 
of w :  if u is any concept of u, then a is a subsort of + ( a )  ; 
if r is any  conceptual relation of u, then Y = + ( r )  ; and 
if the ith link of r is attached  to ai, then the ith link of 
4 ( r )  is attached  to C#J(ui). 

Proof Since u may be  derived from w, there must be a 
finite sequence of applications of detachment  and re- 
striction, A', A', . . ., leading from w to v. Construct 
two  series of well-formed conceptual  graphs u l ,  u2, . . ., 
and wl, w2, . . ., and  a  series of isomorphisms  between 
them +', 4'; . .. Let u1 = w1 = w ,  and let 6' be the identity 
mapping  from u1 to w'. Then if the ith rule Ai was 
detachment, perform that rule on both ui and w i  to  derive 
vi+' and wi+', and  let +"' = 4'. Or if Ai restricts  some 
concept a to  one of its subsorts b, then apply A' to ui 
to  derive vi+' ,  let wi+l = w', and let 4"' ( b )  = + ' ( a ) ,  
but  let 4'" have  the  same value as +' for all other con- 
cepts and  conceptual  relations in vi+'. At  each stage ih 
the  derivation, +'*' will be an isomorphism  from vi+' to 
1 1 %  satisfying the conditions of the  theorem if the con- 
ditions held for i. Since they hold for 1, they must, by 
induction, hold for all i. The conditions must  therefore 
hold for  the last  members of the  series, which are u, w ' ,  
and 4. 

i + l  

This  theorem implies that a projectim of a  conceptual 
graph  can be  overlaid on some  subgraph of the original. 
That subgraph is called a projective origin of the projec- 
tion. A given projection may have more  than one possible 
projective origin. Suppose,  for  example,  that  the  concept 
c was a  common subsort of several different concepts in 
a graph u ;  then  the  concept c by itself would be a projec- 
tion of u, and  every  concept in u of which c was a  sub- 
sort would be a projective origin of c. 

Dejinition If u is a  projection of w, then a subgraph of w 
that is isomorphic to u under  the conditions of the pre- 
ceding theorem is called  a projective origin of u in w. 

The definition of projection would allow the  detach- 
ments  and  restrictions  to be  applied in any order.  The 
next  theorem  shows  that  the  same projection  could  be 
derived in a standard  order  that first applies all detach- 
ments  and then  applies all restrictions. 

Theorem If u is a  projection of w,  then u can  be derived 
from u' by first detaching  conceptual relations  to  form a 
projective origin of u in w and then performing  a series 
of restrictions  on  concepts of the projective origin to 
derive u. 

Proof Since a projective origin of u in w is a connected 
subgraph of w, it must be  a well-formed conceptual 
graph that is derivable  from w solely by detachment. 
Then  to  derive u, restrict  each  concept of the projective 
origin to  the  concept in u to which it is mapped by the 
isomorphism. 

Dejinition If u and w are well-formed conceptual  graphs, 
u is a  projection of u, and u is a  projection of w, then u is 
called a common projection of u and w.  

Theorem If u is a common  projection of u and w,  then 
the projective origin of u in u is isomorphic to  the projec- 
tive origin of u in w. 

Proof Two  graphs  that  are isomorphic to u must be 
isomorphic to  each  other. 

If two graphs  have a  common concept,  the  join rule 
allows  them to be  combined  by merging the  two com- 
mon concepts.  That simple join  on a common concept 
can be extended  to a join  on a  common  projection. If 
two  graphs u and w have a  common  projection u,  then 
the projective origins of u in u and in w are subgraphs of 
u and w that  are isomorphic. Therefore, u and w can  be 
overlaid with the two projective origins matched  up  ex- 
actly. Each  concept in the  two subgraphs can  then  be 
restricted to the  common subsort in their common 
projection u. 

Theorem If u is a common  projection of u and W ,  then u 
and w may be joined on the  common projection u to 
form a well-formed conceptual  graph by the following 
steps: 

1 .  Let u' be a projective origin of u in u, and  let w' be a 

2. Restrict  each  concept of U' and w' to  the  sort label of 

3. Detach all conceptual relations of u' .  
4. Join  each  concept of u' to  the  corresponding  concept 

projective origin of u in w. 

the  corresponding  concept of u. 

of w'. 

The  concepts  and  conceptual relations in the resulting 
graph are  the union of all those in u,  those in u - u' ,  and 
those in w - w'. 

Proof To prove  that  the resulting conceptual graph is 
well-formed, it is necessary  to  show  that  the  same graph 
could  be  obtained from u and w by  applying only the 
basic  formation  rules. First,  the  acts of restricting  con- 
cepts in u' and w' to  their corresponding concepts in u 
are legal because  each  concept in a projection is a  sub- 
sort of the  corresponding  concept in any of its projective 
origins. Second,  the  act of detaching all the  conceptual 
relations of u' at  once  produces  the  same collection of 
well-formed graphs  obtained by  detaching them  one  at a 341 
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Figure 12 A maximal common  projection of graphs in Fig. 5 .  
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Figure 13 A maximal join with a different kernel. 

time. Finally, the  acts of joining the  concepts  from u' 
and w' are legal because they have been restricted  to 
identical subsorts.  The derivation is therfore equivalent 
to a sequence of detachments,  restrictions,  and simple 
joins. 

The first set of restrictions had the effect of replacing u' 
and w' with copies of u. Since  no  detachments were  per- 
formed on  any  conceptual relations of w, the resulting 
graph  before the  joins  must  have been the union of u 
with MJ - w'. Since  the original graph u was  connected, 
every  concept and  conceptual  relation of u - u' must  have 
been connected  to some concept of u' by conceptual re- 
lations not in u'. Therefore,  the final series of joins 
would result in combining the  concepts  and conceptual 
relations of u - u' with those of the union of u with w - w'. 

When  two graphs  are  drawn  on  transparent  sheets, a 
join  on a  common  projection  could  be  illustrated by 
covering part of one graph with part of the  other graph. 
Overlapping conceptual relations have  to  match  exactly, 
but overlapping concepts  are  restricted  to common  sub- 
sorts. 

Dejinition If u and w are  joined  on a common  projection 
u,  then all concepts  and conceptual  relations in the 
projective origin of u in u and  the projective origin of u 
in w are said to be covered by the join. In  particular, if 
the projective origin of u in u includes all of u, then the 
entire graph u is said to  be  covered by the join. 

The notion of covering is important  for answering a 
data  base  query.  The  user's original question is trans- 
lated into a query  graph,  and  the  system  generates  an 
answer graph whose  join with the  query graph covers it 
completely. The  next  three definitions introduce maxi- 
mal joins, which are used in deriving the  answer graph. 

sponds  to a in a projective origin of u in u, and  the con- 
cept c that  corresponds  to a in a  projective origin of u 
in w. 

A  kernel of a common  projection is important  because 
a basic  algorithm for computing  common  projections is 
to  start with a kernel and  then build it up  into  larger 
graphs by  adding other  concepts  and  conceptual rela- 
tions. 

Dejinition Let u be  a  common  projection of u and w with 
a  kernel k = (u ,  6, c ) .  Then u is called a maximal com- 
mon projection with respect  to  the kernel k if there  is  no 
graph t with the following properties: t is a  common 
projection of u and w with the  same kernel k, u is a 
projection of t ,  and u is not  identical to t .  

Dejinition Let u be a maximal common  projection of u 
and w with respect  to  the kernel k = ( a ,  6, c ) .  Then a 
maximul join of u and w with respect  to k is a graph ob- 
tained by joining u and w on  the common  projection u 
under  the condition that  the  concept b in u is joined  to 
the  concept c in w. 

Figure 12 is a maximal common projection of the 
graphs in Fig. 5 with respect  to a  kernel  consisting of 
the  three  concepts labeled HIRE:  one in each of the 
graphs of Fig. 5 and  the  one in Fig. 12. By a maximal 
join  on this graph, Fig. 9 could be  derived  from Fig. 5 in 
one  step. 

A single concept  MANAGER would also  form a 
maximal common  projection of the  same  two  graphs, 
with the kernel  containing the  concept labeled MAN- 
AGER in the first  graph of Fig. 5 and  EMPLOYEE in 
the second  graph. Figure 13 shows  the  corresponding 
maximal join; this join  cannot be extended  as  far  as  the 
two concepts HIRE because  the  conceptual relations 
AGNT and PTNT  are different. The  derived graph 
may be read as  "A manager who hired a person  was 
hired at a certain date." As this example  shows,  two 
graphs may have  several different maximal joins. 

Values  and quantifiers 
The  concepts described so far  are generic concepts  that 
may represent anything of a  given  sort. To describe  ac- 
tual  information about  particular  entities  or  events in the 
data  base,  concepts  must be associated with  particular 
instances. A concept  behaves like a variable in the pred- 
icate calculus: the  sort label is analogous to a subscript 
in sorted logic or a data  type in a programming language; 
it determines  the kind of entities,  events,  or  properties 
that  the  concept may represent.  The  concept  NUMBER, 
for example, may represent any number;  to specify  a  par- 

Dejinition If u is a  common  projection of u and w, then a ticular number, it must be assigned  a  value. Figure 14 
kernel of the common  projection consists of three  con- shows concepts with  values specified by placing either a 

342 cepts:  any  concept a in u,  the  concept b that  corre- literal or a proper  name  after  the  sort label. 
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A concept may be indefinite, constant,  or quantified. 
An indefinite concept  has  just a sort label inside the  box, 
a constant  concept  has a specified value, and a  quanti- 
fied concept has  a logical quantifier. Since values  and 
quantifiers are mutually exclusive,  they  are both  written 
in the  same position in the box. The symbol V represents 
a  universal  quantifier and 3 an existential quantifier. 

Besides  representing  quantifiers, conceptual graphs 
must  indicate their  scope.  For  each existential  quantifier 
that  depends on one  or more  universal  quantifiers, dot- 
ted lines may be drawn from the universal  quantifiers to 
the existential. Figure 15, for  example,  represents  the 
proposition 

(VX) ( ~ y )  (32) ( z  = difference (x, y )  1. 

Note  that  the variable  names  x, y ,  and z have disap- 
peared  from Fig. 15. The  purpose of named  variables in 
logic is to indicate repeated  uses of the  same variable by 
repeated  occurrences of its name.  In conceptual graphs, 
however, a  variable appears  as a box, and all uses of 
that variable are linked to the same box. By eliminating 
named variables,  the  graphs eliminate  accidental  varia- 
tions  caused by different choices of names and  avoid the 
need to rename  variables in substitutions. 

Dotted lines  showing the  scope of quantifiers  can 
express finer distinctions than the  standard  predicate 
calculus. For  example,  consider a predicate P ( x ,  y, z, w) 
with x and y universally quantified, z existentially  quanti- 
fied depending  only on x, and w existentially quantified 
depending only on y.  Both of the following formulas in 
standard logic introduce irrelevant dependencies of u’ on 
x o r z o n y :  

The  dotted lines  overlaid on a conceptual graph  repre- 
sent only those  dependencies  that  are logically neces- 
sary [ 151. 

The ordinary  existential  quantifier 3 states  that  there 
exists  one  or  more  entities  that  meet  the given  condi- 
tions. For the  graph in Fig. 15,  the result of the function 
is unique;  therefore,  the unique  existential  quantifier E’ 
may be  used to  state  that  there  exists  exactly  one value 
of z for  each pair of x and y .  In  general, a function of n 
arguments is determined  whenever  the unique  existential 
E’ depends  on n universal  quantifiers. Since  the  dotted 
lines then define a function,  they are called functional 
dependencies [ 161. The basic conceptual graph repre- 
sents  the domain roles,  and  the functional dependencies 
are a separate graph structure overlaid on  top of the 
original graph;  the  two  structures  represent complemen- 
tary information, and  each is necessary  for a full descrip- 
tion of the  data  base relations. 

pG&Gq F I V  
Figure 14 Concepts with specified values. 
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Figure 15 Quantified concepts with lines indicating scope. 

Dejinition A functional  dependency in a conceptual 
graph is a set of function links from one  or more  con- 
cepts called sources to a concept called the target of the 
functional dependency.  Associated with each functional 
dependency is an access procedure. Whenever all the 
sources of a  functional dependency  have  values,  the 
access  procedure  can  compute a  value for  the target. 

In the  ordinary predicate calculus,  functional  depen- 
dencies  are seldom stated explicitly. In a  system for ac- 
cessing data  bases  and  other computational  facilities, a 
statement  that  one variable depends  on  another is not  as 
useful as  an  access  procedure  that can compute  the 
dependency  upon  request.  The technique of combining  a 
logical notation with procedures  that  evaluate  functions 
has  great generality: Woods [17] developed such a tech- 
nique for his question answering system, Winograd 
[ 181 suggested  a  method that  he called procedural at- 
tachment in his  discussion of frame systems, and  Weyh- 
rauch and Thomas [ 191 used  a similar method of seman- 
tic attachment in their proof  checking system. 

Plural nouns normally have  sets of entities  as  their 
values. For  the  question  “What  employees were  hired 
by Jones?”  the  expected  answer would be a set. To 
answer  such  questions,  concepts may have  sets  as val- 
ues,  and a new symbol, E-set, is introduced to  represent 
“There  exists a set of sort. . . .” This quantifier is 
weaker  than  the ordinary  existential because it allows 
empty  sets  as values of the  concept.  Since E’ defines an 
ordinary  function, it can  support functional  composi- 
tions;  E-set,  however,  cannot  support  the  same composi- 
tions  because it would create fallacies such  as  the 
connection  trap [ 201. 

Another refinement that  increases  the  expressive 
power of the notation is the possibility of introducing 
compound  sort labels,  which are  themselves  conceptual 
graphs,  For  the  nonrestrictive  phrase “All elephants, 
which have  trunks,”  the quantifier  “all”  applies  only to 343 
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Figure 16 Conceptual schema for the HIRE relation. 

the  sort  ELEPHANT; but in the restrictive phrase "All 
elephants that perform in circuses" the quantifier applies 
to  the  sort ELEPHANT-THAT-PERFORM-IN-CIR- 
CUS. Although a sorted logic could use roundabout 
paraphrases  to avoid adding new sort lables,  Altham and 
Tennant [ 2 1 ] developed a notation  for sort  expressions 
that reflects the  structure of the original English sen- 
tence.  For  this example, the compound sort expression 
would itself include an existential quantifier on CIR- 
CUS. 

Altham and  Tennant's  approach could be adapted  to 
conceptual graphs by making the set of sort labels  open- 
ended  and accepting graphs  that meet certain conditions 
as new labels. Formalizing that  approach,  however, 
would require  considerable  discussion that is  beyond the 
scope of this  paper.  Values  and quantifiers on  concepts 
are defined formally by introducing  two  selector  func- 
tions, value and quant, which apply to a concept and re- 
turn whatever  value or quantifier is written inside the 
box. 

Assumption The two  functions value and quant may be 
applied to  any  concept e. If both ualue(c) and quant(c)  
are undefined, then c is indefinite. If ualue(c) is defined, 
then c is constant. If quant(c) is defined, then c is 
quantified. These two  functions  obey the following rules: 

No  concept is both constant  and quantified: for all e ,  
either uafue(c)  or quant(c)  is undefined. 

Whenever quant (c) is defined, its  value is one of the 
four symbols {V, 3, E', E-set}. 

There is a function permissible, which defines a set of 
permissible  values for a concept with a given sort la- 
bel: if c is any  constant  concept, then uulue(c) must 
be in the set permissible  (sort (c) ) . 
If s and t are sort labels  for which s 5 t ,  then permissi- 
b l e ( ~ )  is a subset of permissible(t). 

Note  that  the formal definitions are independent of the 
344 box and circle  notation. By using the  selector functions 

sort, uulue, and quant, definitions and  theorems  can re- 
fer  to  the  components of a concept without mentioning 
the way  they  happen to be drawn on paper  or represent- 
ed in computer storage.  Although  diagrams are impor- 
tant  for helping people to visualize conceptual graphs, 
the formalism should not depend on some  artist's  draft- 
ing techniques. 

Conceptual schema 
A  conceptual  schema  is a conceptual  graph that  has cer- 
tain combinations of quantifiers and  functional  depen- 
dencies. It is a  mediator  between  the  conceptual graphs 
and  the  other facilities in the  computer system:  its un- 
derlying structure is a conceptual  graph,  but  its  func- 
tional  dependencies  form  a  superimposed structure  that 
provides  a  direct mapping to the  data base. To answer a 
user's question, the system would find or  construct a 
schema having functional  dependencies that would com- 
pute  the desired  answer. The computed  values may be 
simple scalars if the target of a functional dependency 
is quantified with E', or they may be  sets if it  is  quanti- 
fied with E-set. The ordinary  existential quantifier 3 is 
not used in a schema  because it does  not define a  unique 
function. 

Dejinition A conceptual  schema is a well-formed con- 
ceptual  graph having one or  more  functional  dependen- 
cies. If the  concept c is a source of one  or more  func- 
tional dependencies,  but  not  a  target of any  dependency, 
then quant(c)  = V. If c is a  target of one functional de- 
pendency and a source of one  or more  functional  depen- 
dencies,  then quant(c)  = E'. If c is a  target  but not a 
source,  then quant(c)  is either E' or E-set. No concept 
may be the  target of two or more  functional  dependencies. 
All other  concepts in the  schema  are indefinite and are 
called selectors. 

For a relational data  base,  the relations are described 
by conceptual  schemata. If a  relation is in Codd's third 
normal form [ 221, it has  a key consisting of one  or more 
domains, all other domains are functionally dependent 
upon the key,  and there  are no  transitive  dependencies. 
For such a relation, the conceptual  schema would have a 
quantified concept  for each  domain as well as selector 
concepts  and conceptual  relations that  describe  the 
domain roles. In  the relation HIRE,  for example,  the 
key domain EMPLOYEE is universally quantified, the 
concepts  for  the nonkey  domains MANAGER and 
DATE have the quantifier E', and the selector concept 
HIRE is indefinite (Fig. 16). Attached  to the  two  func- 
tional  dependencies are  the  access  paths for some data 
base  relation. 

Many relations  and  functions have more  than one  set 
of key  domains. For  such relations,  the  system  needs  a 
separate schema for  every possible set of keys. Differ- 
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ence is a function  with three possible  keys: in normal 
use,  the  two arguments are  keys  that  determine  the  re- 
sult,  but with either argument and  the  result,  the  other 
argument is determined.  In  order  to  compute  any of the 
three  values, given the  other  two,  the  system would need 
three  schemata:  besides Fig. 15, it would eed a schema 
that  showed argument 1 functionally dependent  on  result 
and  argument 2 ,  and  another  schema  that  showed argu- 
ment 2 functionally dependent  on result and  argument 1 .  
The  system would select  the  appropriate  schema  for a 
given  problem,  depending on which  values were speci- 
fied and which were  to be  determined. Since  the algo- 
rithms for a function and its inverse  are usually quite 
different, each of the  three  schemata would have  to 
specify a different procedure. 

The  conceptual  schema  for difference illustrates the 
use of schemata  for  representing  functions  that  access a 
procedure instead of a stored file. The greater-than  rela- 
tion,  for example, has infinitely many entries,  but it 
could  be evaluated by a simple procedure;  its  conceptual 
schema would look  like  a data  base  schema,  but  its  func- 
tion links would be  attached  to a procedure [23]. As 
this example illustrates,  a conceptual schema can pre- 
sent  the  same  interface  to  the  user  for  either a computed 
or a stored relation. 

For  some  data  base  relations, all domains  are  part of 
the key. The  STOCK relation, for  example, is a many- 
to-many  relation between  parts  and  the supplier  who 
stock  them;  each supplier may stock multiple parts,  and 
each  part may be in the  stock of multiple suppliers. This 
relation has two domains, both domains  are  part of the 
key,  and  there  are  no  other  domains functionally depen- 
dent  on  the key. To  place universal  quantifiers on  both 
domains in the  schema would be inaccurate  because it 
would imply that all suppliers stock all parts. Instead, 
two  schemata,  as in Fig. 17, are  needed:  one  says  that 
for  each supplier there  exists a set of parts,  and  the  other 
says  that  for  each  part  there  exists a set of suppliers. 

The quantifier E-set includes the possibility that  the 
set may be empty.  Some  suppliers,  for  example, may not 
stock  any  parts  at  the  present time. Whenever a domain 
Y is functionally dependent  on domain X ,  e.g$ X + Y ,  
the  inverse function f" determines a set of values in 
X (possibly  empty)  for  each value in Y .  For  the  HIRE 
relation, DATE is functionally dependent  on EM- 
PLOYEE;  therefore,  for all dates,  there  exists a possi- 
bly empty  set of employees hired on  that  date.  Since 
this fact is implied by the  schema in Fig. 16, the  system 
could either  have a separate  schema  for  the  inverse,  or it 
could have a mechanism for deriving an  inverse  schema 
when  necessary. 

Any relation over n domains  can  be  characterized by 
a conceptual schema having n - 1 source  concepts  and a 
target concept quantified  with E-set.  This  is  the  weakest 
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Figure 17 Conceptual schemata for the STOCK relation. 

possible assumption  and also the  least interesting. In 
most  practical  applications, a relation has a key of less 
than n domains  and  the  nonkey  domains  have  unique 
values  for  each combination of values for  the  key do- 
mains. When a target  concept  has  the  unique existential 
E', targets  and  sources may be  joined  to  form  intricate 
paths of functional dependencies to answer  complex 
questions. The  selector  concepts in a schema are like the 
knobs  and  indentations  on  the  pieces of a  jigsaw  puzzle: 
they  determine  the  ways in which a schema may be  joined 
to  other  schemata.  In  the  extreme  case,  the analogy 
with a jigsaw  puzzle is complete;  the  schemata fit togeth- 
er in  only one way to  answer a fixed number of possible 
questions. In  the general case,  there  is  an  endless variety 
of combinations;  the  selectors match concepts in the 
user's  question to determine  the selection of schemata 
required to  answer it. 

In  the SPARc/DBMS approach [24], the  term  con- 
ceptual schema  refers to a complete  description of all 
the logical relations in the  entire  data  base;  it  is a de- 
scription of the  user's view at a conceptual level rather 
than a description of the system's view of the  data 
as  stored.  Since a conceptual  schema  as defined in 
this paper  describes only  a part of the  data  base,  it 
would correspond  to a conceptual  subschema in the 
SPARc/DBMS terms.  Except  for this  difference in ter- 
minology, the sPARc/  DBMS approach is compatible 
with the  theory developed in this  paper. In  fact,  the for- 
malism for  conceptual  graphs and schemata may be 
considered as a proposed description  language for 
sPARc/DBMs,  which as  yet  has not  developed a formal 
notation. 

As in the sPARc/DBMs approach,  the  first  step in 
defining a data  base is to  develop a  formalized model of 
an  enterprise, with a list of all the  entities  and relation- 
ships  to be represented.  For  each relation to be stored in 
the  data  base,  the  data  base designer would define one or 
more  conceptual  schemata to represent  the  roles of the 
entities  and  the functional dependencies  between them. 
He  would then map  the  access  procedures  to internal 
paths in the  data base, and  he would  specify a domain in 
some relation for  each quantified concept. If  a schema 345 
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had n quantified concepts,  the mapping  would  specify n 
different domains in the  data  base, possibly in different 
relations. The formation  rules for  conceptual  graphs 
could then  be used to  form  the  schemata of derived rela- 
tions: an equal-join of two  data  base relations would 
correspond  to a join of their  schemata,  and a  projection 
of a relation would correspond  to a  projection of its 
schema. 

Boolean connectives 
The world. according to Wittgenstein, is all that  is  the 
case [ 2 5 ] .  For a particular  aspect of the world, a data 
base is all that is known to be the  case. Wittgenstein’s 
view of the world as a “totality of facts,”  an  enormous 
conjunction of elementary  propositions, is a position that 
he modified in his later philosophy,  but  his early position 
is an  apt  characterization of a data  base: a data  base is a 
large  conjunction of propositions, all asserted  to be true. 

The main advantage of relational data  bases is that  the 
propositions are  stored in a simple logical form. The 
data  base is organized as a  conjunction of relations,  each 
represented by a list of n-tuples for which it is known to 
be true;  the  structure  is  further simplified by storing the 
relations in third  normal  form. Furthermore,  the proposi- 
tions in a data  base  are positive; data  bases seldom if 
ever  contain negated predicates  and relations. Other 
Boolean connectives,  such  as disjunctions, are  also  ab- 
sent in the  data  as  stored, although  they may be  used in 
a data  base  query. Conditionals are  never  present in 
stored  data  and  are rarely  used in queries,  but they are 
common in stating constraints. 

These  observations imply that  the Boolean connec- 
tives  have clearly  distinct uses in a data  base  system. 
Reaction-time  experiments  show  that people  also find 
some  connectives  more difficult to  process  than  others: 
disjunctions  normally take more  time than  conjunctions; 
negative statements  take longer to  interpret  than positive 
statements if they are  presented in isolation, but  they  are 
just  as  easy  to  process  as positive statements if they are 
negating a  presupposition that underlies the  current dis- 
cussion [ 2 6 ] .  The  apparent symmetry in the  standard 
notation for symbolic logic is misleading because it sug- 
gests  that  conceptual  graphs should represent them all in 
a parallel form. In  fact, conjunction is the only one  that 
is easy  to  represent- simply by joining  graphs. To repre- 
sent all Boolean connectives in a conceptual  graph,  there 
are  two basic approaches, which may be called abstract 
and  direct. 

The  abstract  approach  treats Boolean connectives  as 
functions of truth values, as in  symbolic logic. It  intro- 
duces  two new sort labels, SITUATION  and  TRUTH- 
VALUE,  and a conceptual relation MODE. A concept 
labeled SITUATION may have  conceptual  graphs  as 

346 values,  and  one labeled TRUTH-VALUE may have 

values  true,  false,  possible, unlikely, etc. MODE is a 
dyadic relation that links SITUATION, whose  value is 
a  conceptual graph,  to  TRUTH-VALUE,  whose value 
states  whether  the graph is true  or false. Then all Boo- 
lean connectives  are  represented  as  concepts of func- 
tions  that  take  truth values as  arguments  and  produce 
truth values as  results;  for  any  formula in the proposi- 
tional calculus, each Boolean connective would corre- 
spond to a concept of a Boolean function,  and  each pro- 
positional  symbol would correspond  to a concept with 
sort label SITUATION. With this construction, formu- 
las in  symbolic logic can  be mapped  directly into con- 
ceptual graphs. This  approach  shows  that conceptual 
graphs  are  at  least  as general as  standard logic,  but it 
does not take  advantage of the special properties of the 
graphs. 

The  direct  approach is based  on  the  hypothesis  that 
conceptual  graphs  are isomorphic to the  mental  struc- 
tures underlying human thinking; it uses psychological 
and linguistic evidence to formulate the  rules  and com- 
puter simulations to  test their efficiency. This  approach, 
which is discussed in a forthcoming  book [ 2 7 ] ,  assumes 
that  the Boolean connectives may be  represented stati- 
cally, as in the  abstract  approach,  but  that  their primary 
role is to indicate operations  for combining conceptual 
graphs;  the  system  has a current working graph, and the 
Boolean connectives specify operations  on  that graph: 

Conjunction Join a  new  graph to  the working graph. 

Negation  Detach  the negated  subgraph from  the 
working graph;  an isolated  negation would have noth- 
ing to  detach  and would require  the creation of an arti- 
ficial working  graph. 

Disjunction Create  an  extra  copy of the  current work- 
ing graph,  and  join  each  alternative  to  one of the 
copies. 

Implication  If some subgraph of the working graph is 
a  projection of the  antecedent,  then  join  the  conse- 
quent  to  the working  graph. 

Since the topic of this paper is not  psychology, but  data 
bases,  further elaboration and justification for  these rules 
is left to  the forthcoming  book. Two  observations, how- 
ever,  are  worth making: first, the  procedural  aspect of 
these  rules may make them  useful in a computer simula- 
tion; and second, they are  compatible with the  abstract 
approach, since the working  graph  could be  made up of 
concepts of situations,  truth  values, and  Boolean 
connectives. People  could therefore learn to  do symbolic 
logic, but they would have  to perform multiple “direct” 
steps  for  each  “abstract” operation. 

For answering data  base  queries,  the  system could use 
both direct  operations  for combining graphs  and  abstract 
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representations  for Boolean connectives. If the  user’s 
query contained Boolean connectives, they would initial- 
ly be translated  into  the  abstract style. But to  determine 
what  data  base relations  should  be accessed,  the  system 
would rely upon operations  for directly  combining  con- 
ceptual schemata. Since  the  abstract  approach  does  not 
illustrate the novel features of conceptual graphs,  the 
remainder of this paper  concentrates  on  techniques us- 
ing direct  operations. 

Answering a query 
Since  the logical structure of a data  base  has  such a sim- 
ple  form, a special algorithm for answering data  base 
queries  can be  more efficient than a general procedure 
for proving theorems.  Whereas a  theorem prover  de- 
duces a general theorem, a data  base  system  starts with 
facts  about particular entities  and  determines which  enti- 
ties satisfy a given  relation. A typical query may have 
the logical form, 

Find all pairs (x, y ) ,  for which R ( x ,  y ,  a ,  b, c )  is true. 

In this  example, R is a  relation, x and y are variables 
whose values are  to  be  determined,  and a, b, and c are 
constants specified in the  query. If R happens  to be one 
of the  basic relations around which the  data  base is orga- 
nized,  the logical problem of answering  this query is triv- 
ial,  although the programming effort may be significant 
for nonrelational data bases. A major difficulty for  data 
base  query  systems  occurs when R is not one of the 
basic relations but must be  determined by some combi- 
nation of relations. 

Most  query languages  avoid the difficulty by requiring 
the  user  to learn the files or relations in the  data  base 
and  then  to  state his query in terms of them. Even  the 
sophisticated systems based on relational data  bases, 
such  as SEQUEL,  SQUARE, or  Query-by-Example,  require 
the  user  to  name  each relation explicitly. If the  query 
requires  data  from  two  or  more relations, the  sequence 
of operations  for combining  them can quickly exceed  the 
abilities of a  nonprogrammer. Menus  and on-line  help 
facilities can remind the  user of the available  relations 
and give him a refresher  course  on how to combine 
them. Help facilities,  however, do  not  make  the learning 
problem go  away;  they  just  provide a piecemeal  tutorial 
instead of a complete user’s guide. 

For  systems with a natural  language  interface, the in- 
ference problem cannot be avoided. The following state- 
ment,  for example, is not natural  English: 

In relation HIRE, find EMPLOYEE where MAN- 
AGER is  Jones. 

People  never talk like that to  other people. They would 
say,  “Who did Jones hire?” and  expect  the  listener  to 

infer what relations and  domains  are involved. Many 
natural  language systems can answer this type of ques- 
tion because  the required domains  are in a single data 
base relation; the REQUEST system described by Plath 
[28] and Petrick [29] supports a natural syntax  for  such 
questions. Queries  that  apply a function to  the  data  are 
also easy to handle if the  user’s question specifies the 
function by an  appropriate  keyword,  such  as “average” 
or “total.” Queries  that combine data from two  or  more 
relations can  be handled if the  system designer  antici- 
pates  the  form of the  question by  providing a macro  or 
procedure  for answering it. But  conceptual graphs  are 
designed for  the more  general  problem of having the  sys- 
tem  determine  for itself what relations and domains are 
necessary  to  answer a  given  question. 

If the user’s question is incomplete or ambiguous, the 
system may prompt him for  further information; and it 
may refuse  to  accept  words  or  constructions  that  it 
doesn’t understand. But in no  case should the  system 
require  the  user  to specify the  stored relations and ac- 
cess  paths in the  data base. Determining  the required 
relations is  not a problem of syntax,  but semantics. The 
REQUEST system,  for  example,  has a  sophisticated  syn- 
tax  that  can  translate a  usable subset of English into a 
formal notation,  such  as a conceptual graph or a rela- 
tional query language. Heidorn’s natural  language pro- 
cessor [30] would also  be adequate; his  internal prob- 
lem descriptions  are similar in structure  to  conceptual 
graphs,  and his prompting  technique could support a dia- 
logue for handling complex  queries. The inference prob- 
lem arises after the natural  language statement  has been 
translated into a  formal  notation: merely converting the 
syntax  cannot  add information; if the  user did not  speci- 
fy the  relations,  the  translated  form will not specify them 
either. 

For  the TORUS system [ 21, the designer  must  solve 
the inference  problem in advance by creating a prede- 
fined network of concepts with all possible  combinations 
that  anyone might ever  ask  about. When the  user  types 
in a question,  the  system  translates it into a query graph 
and  attempts  to match it to some part of the predefined 
network.  Associated with various parts of the  network 
are links to  appropriate  data  base relations.  Which rela- 
tions are required to  answer a given question is deter- 
mined by the  parts of the  network  that match the  query 
graph. 

For a data  base with  a small number of domains  that 
can only be related in a fixed number of combinations, 
the predefined network is adequate. But in the general 
case,  the  number of combinations may be infinite; some- 
one might ask  the  question  “Who was the  person  who 
hired the  person who  hired Jones?”  where a single rela- 
tion may be iterated arbitrarily many times. If the  sys- 
tem can  join  conceptual  schemata  as  needed, it can gen- 347 
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Figure 18 A sample query graph. 

erate only those combinations  required for  the  question 
at  hand;  otherwise, it would have  to  store  an  enormous 
number of combinations, most of which would never be 
used.  Another  weakness of the giant network is the lack 
of modularity: if the  data  base designer  wanted to  add, 
delete,  or redefine  a data  base relation, he would have  to 
change  every  part of the  network from which that rela- 
tion could be accessed; in an incremental approach, 
however,  he might only have  to change one  schema  that 
was mapped to  that relation.  A  third weakness of the 
predefined network is that it places the burden on  the 
data  base designer to  foresee all possible  combinations 
at  the time he is defining the  network;  an incremental 
approach would allow him to  enter simple schemata  and 
let the  system  form the  combinations. Questions of rela- 
tive efficiency depend on the  implementation: whether  it 
is faster  to  search through  a  large  graph or  to copy  and 
join small graphs;  whether a single large graph  requires 
more 1 / 0  transfers  than several small graphs;  and 
whether  search  techniques  can more  easily find a path 
through  a large graph or find multiple small graphs. 

With conceptual graphs,  either  the single network or 
the collection of schemata could  be  used. The recom- 
mended approach,  however, is to  join  schemata  as 
needed to  answer a given query.  For efficiency, some 
combinations that  are  frequently used together could  be 
included in a single schema.  The value of the  concept 
AGE,  for example, may be computed by finding a date 
of birth in the  data  base  and calling a procedure  that sub- 
tracts  two  dates;  therefore,  the  schema  that defines 
AGE could include access links for both the  data  base 
relation and  the  procedure. Efficiency, of course, is 
meaningless  unless the  system can answer  the original 
question  and  guarantee  that  the  answer is correct; it 
must start with the  query graph and  determine which 
schemata  to  join  and which data base accesses  to  make 
in order  to  compute  the  answer. 

When the  user  types in a question,  the  input  analyzer 
should translate  it  into a  well-formed conceptual graph q 
(the  systems  described by Heidorn  or  Petrick could be 
adapted  to  do  the  translation).  Every  concept in the 
graph q whose value is to be determined would be 
flagged with  a  question  mark. To determine values for 
the flagged concepts,  the  system should generate  an 
answer graph w that  meets  the following criteria: 

1.  w is a well-formed conceptual graph. 
348 2. w is true if the  data  base is correct. 
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3. The  entire  query graph q is covered by a join with the 

4. For  every  concept in q that  has a  value, the  corre- 

5. For  every  concept in q that had a question  mark,  the 

answer graph w .  

sponding concept in w has  the  same value. 

corresponding  concept in w has a value. 

Point 1 would be satisfied if the  system  generates w by 
using the  basic formation rules  or  the derived rules  such 
as projection and maximal join.  Point 2 guarantees  that 
the system is sound; i.e., it will not generate  incorrect 
answers.  Point 3 implies that w includes all of the do- 
main roles and relationships of  the  query  graph, although 
some of the  concepts may be  further  restricted;  for ex- 
ample,  PERSON in the  query graph may be  restricted  to 
EMPLOYEE  or  MANAGER  as a  result of joins with 
various conceptual  schemata. Point 4 insures  that  the 
answer is talking about  the  same  entities  that  the  user 
asked  about.  And point 5 states  that w must  include an 
answer to the  question. If the original question  was in- 
complete  or ambiguous, then it would not have a unique 
answer. In that  case,  the  system should  prompt the  user 
for  further information; it should  not require him to re- 
state  the  entire  question,  but only to add  values or condi- 
tions that  are  necessary  to  complete it. 

Algorithms for generating an  answer  graph 
Before  considering  a  general  algorithm, we should look 
at a special case  where  the  answer graph is easy  to find. 
Suppose  someone  asked  the  question  “Who hired Lee?”. 
The  query graph for this  example is Fig. 18. 

The  conceptual  schema in Fig. 16 almost meets  the 
criteria  for  an  answer graph: a maximal join with the 
schema  for HIRE would cover  the  entire  query  graph. 
The  schema  does not  satisfy criterion 4 or 5 ,  however, 
because it does not have values for  the  concepts in the 
query graph having a value or a “?”. To determine val- 
ues, Fig. 18 may be joined with Fig. 16 to  produce Fig. 
19. The  question mark  from the  query graph is carried 
over,  and  the value “Lee”  replaces  the universal  quanti- 
fier. ( I t  the  standard  predicate calculus, a universally 
quantified  variable  may  always  be  replaced by a  con- 
stant; but in a sorted logic, the replacement is permissi- 
ble only if the  sorts  match.  The  corresponding rule for 
conceptual  graphs implies that  the system  must check 
whether  Lee is an employee  before  restricting PER- 
S0N:Lee to  EMPL0YEE:Lee in order to perform the 
join.) 

When  the target of a function is flagged with  a ques- 
tion  mark and all of its  sources  have  values,  then a value 
for  the target can be computed by the  access  procedure. 
Since the  concept  MANAGER:E’? is functionally de- 
pendent  on  EMPLOYEE:Lee,  the value for MAN- 
AGER can  be  obtained  from the  data  base.  Then  the 
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manager’s  name would be substituted  for  the quantifier, 
and the resulting  graph would satisfy all the  criteria  for 
an  answer.  In a  more  complex case,  the target of a func- 
tional dependency may be flagged with  a question  mark, 
but one  or more sources may not  yet have  values; in that 
case,  question  marks could be propagated  backwards 
along the function  links to flag the  source  concepts 
whose values  are  requested. If the  question  marks  even- 
tually stop  on  concepts with values,  then the  access pro- 
cedures  can be called and  the  results  returned  to  the 
original question  mark, which came from the user’s 
query. 

The critical  problem arises when  a  question mark 
stops on a concept  that  has  neither a value nor a func- 
tion link leading to  it; then there is no  procedure  to  exe- 
cute  or place to propagate another question mark.  Such 
a state is similar to  an original query  graph.  Figure 18, 
for  example, had a question  mark on a concept  but  no 
function  links. For Fig. 18, the  answer was  obtained by 
joining the  query graph to a conceptual  schema so that 
the  question mark was joined to a target  concept.  This 
technique  could  be  generalized to form  algorithm A: 

Start with the  concepts on the  query graph that  are 
flagged with question  marks;  join  conceptual  schemata 
to the graph so that the Ragged concepts  are  covered 
by target  concepts; propagate the  question marks 
backwards along the function links;  evaluate any  func- 
tional dependencies whose sources all have  values; 
and  repeat until the original question is answered. 

This algorithm sounds plausible,  but will it always termi- 
nate with  a  result,  and will the result  be the  correct  an- 
swer  to  the original question? 

Unfortunately, algorithm  A may not  always terminate, 
and it can  generate  incorrect results. If the original ques- 
tion was incomplete, the algorithm makes no provision 
for generating prompts:  instead, it keeps joining  sche- 
mata  and propagating  question marks  without  ever having 
enough  values to  answer them.  Although every function 
may generate  correct results, there could be multiple 
paths of function  links in the  data  base,  and  the algo- 
rithm might stumble  upon  a  path  that answered a ques- 
tion different  from the  one  the  user  asked;  the  user may 
have  asked  for  the quantity of widgets on  hand,  and the 
algorithm could generate  the quantity ordered. 

To keep  the  system  from looping endlessly on unsolv- 
able problems,  algorithm B imposes another condition 
on algorithm A:  every  join of a new schema  to  the  de- 
veloping answer graph  must cover  at  least  one  concept 
of the original query graph. This restriction keeps  the 
graphs from growing too large, with branches  far  remote 
from  the  concepts of the original query. By avoiding 
remote  joins, algorithm B may be  unable to  answer some 
complex  queries automatically, but it could still answer 

t 
HIRE DATE:E’ 

? 

Figure 19 First  step  towards  the  answer  graph. 

a  potentially infinite number of questions.  For  example, 
“Who was the  person who  hired  the person who hired 
the person  who hired Jones?” could  be answered be- 
cause  every  schema joined would cover  part of the origi- 
nal query  graph. If the  system  runs  out of schemata  to 
join  to  the graph  and it still has  unanswered  question 
marks, it could  use the  concepts left with question marks 
as  the starting  points for prompting the  user  for  further 
information. By asking for help when it runs into a dead 
end,  the  system could extend  the query  graph  and  even- 
tually generate  any  answer derivable  from the  data base. 

The additional  restriction for algorithm  B  keeps it 
from looping, but it does not guarantee  correct  answers. 
The next three definitions characterize  the permissible 
conditions for joining schemata, the  schematic  universe 
that includes all possible schemata  that may be  derived 
by  repeated joins, and the  set of all correct  answer 
graphs.  Every  answer graph may be generated by deter- 
mining values for  the quantified concepts of some sche- 
ma in the  schematic universe. For  the TORUS system,  the 
analog of the schematic  universe is its single large con- 
ceptual  network.  For this theory,  however,  the schemat- 
ic universe would never be generated in its  entirety; in- 
stead,  schemata would be joined  as needed to  answer a 
given query. 

DeJinition A schematic jo in is a join  either of two con- 
ceptual  graphs or of one  conceptual graph with itself 
under  the following conditions: 

The  join must  be maximal. 

The result  inherits all function links;  the  sources  and 
target of each functional dependency in the resulting 
graph are  the  concepts  covered by the  source and  tar- 
get  concepts in the original graph. 

When an indefinite concept is joined to a quantified 
concept,  the resulting concept  has  the  same quantifier. 

When the quantifier E’ is joined to the quantifier V, 
the result has quantifier E’. 

When the quantifier V is  joined  to  the quantifier V, the 
result has quantifier V. 349 
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All other  joins of quantifiers (E' to E', E' to  E-set, E- 
set  to  E-set,  and  E-set  to V) are  prohibited; if this  re- 
striction prevents a join from being maximal,  then the 
prospective schematic join is rejected. 

Theorem The graph that  results  from a schematic join of 
one  or  two  conceptual  schemata is also a conceptual 
schema. 

Proof This result  follows  from the  observation  that  the 
properties defined for a conceptual  schema  are pre- 
served by the conditions for a  schematic join. 

One  reason  for requiring the  joins  to be maximal is to 
force  the  paths of selector  concepts  to  coalesce when- 
ever possible; otherwise,  redundant  or  spurious  paths 
could  be generated  that  the  data  base designer had not 
intended. Since universal  quantifiers are  the  sources of 
function  links, the effect of joining two universals is to 
specify the  same  argument  for  two different functions  or 
for  two  arguments of the  same function.  Joining E' to V 
specifies the result of one function as  an input argument 
of another. Joining two existential  quantifiers is prohib- 
ited because  two different  functional dependencies 
would then have  the  same target concept, which might 
be  assigned  two  inconsistent  values. The  requirement 
for maximal joins  together with the prohibition  against 
joining two existential  quantifiers prevents  the  same 
schema from being joined more  than once in exactly  the 
same  position; this  restriction prevents  the  system from 
getting into a loop when it is generating an  answer  graph. 
The rule against  joining  E-set  with  a  universal  quantifier 
prohibits sets  as inputs to  functions;  further  extensions 

with the  source  concept of another  copy of the  same 
schema would produce  the  schema  for f ( f ( x ) ) .  The 
join of the target o f f  with the  source  concept of the 
same  copy would produce  the  schema  for x = f ( x ) .  A 
join of the two source  concepts  for g would produce  the 
schema  for I: ( x ,  x ) .  And a join of a schema  for f with a 
schema  for g in all possible  combinations would produce 
schemata  for x ( f ( x ) ,  Y), g ( x ,  f ( y ) ) ,  and f ( g ( x ,  Y)) 
when the target of one functional dependency is joined 
to a source of another; but it would also  produce  the  com- 
binations { f ( x ) ,  g(x, y ) }  and {g(x, y ) ,  f ( y ) }  when  the 
sources  are  joined.  Note  that joining two copies of the 
schema  for f could not produce { f ( x ) ,  f ( x )  } because a 
maximal join would cause  the  two identical  function  con- 
cepts  as well as  the  two target concepts  to  be overlaid on 
top of each  other;  the prohibition  against  joining two ex- 
istentials would then  cause  the  join  to be  rejected. 

When all universally  quantified concepts in a schema 
are assigned  values from  the  data  base, then the  access 
procedures  can  compute values for  the  other quantified 
concepts. By systematically  generating  values for all 
schemata in the schematic universe,  the  set of  all possi- 
ble answer  graphs may be enumerated. If a  closed  cycle 
of function  links has  been  created by some schematic 
join, then the resulting schema  can  never  obtain values 
for  targets in the  cycle and cannot lead to  an  answer 
graph. A conflict may arise when  a  target concept has 
been  restricted for  some  join;  then a value computed  for 
the target may not belong to  the  subsort  to which the 
concept  has been restricted;  any  graph with such a  con- 
flict is rejected [ 3 11. 

to  the  theory could allow sets  as  inputs, but these will 
not  be  considered in this paper. 

Dejinition The  schemutic universe determined by a set S 
of conceptual schemata is the  set of all schemata  ob- 
tained by the following operations: 

All schemata in S are in the  schematic universe. 

For  each  schema s in the  schematic  universe, if a 
schematic join of s with itself is possible,  then the 
schema  that  results from that  join is in the schematic 
universe. 

For  each pair of schemata (s, t )  in the schematic uni- 
verse, if a  schematic join of s and t is possible,  then 
the schema that  results from that  join is  in the sche- 
matic  universe. 

Since  the  schemata in S define functions, the  schemat- 
ic universe represents all possible functions  that may be 
derived  by  composition of the  functions in S .  As  exam- 
ples,  let f ( x )  and g ( x ,  y )  be functions defined by sche- 
mata (cf. Fig. 15 for a  diagram of such a schema).  Then 

350 a schematic join of the target concept of the  schema  forf 

Definition An answer graph is a conceptual graph  ob- 
tained by assigning values to  the quantified concepts of 
some schema s according  to  the following rules: 

For  each  concept c in s where quant ( c )  = V, assign  a 
value in the  set permissible  (sort ( c )  ) . 

When all source  concepts of a functional dependency 
have values and  the target does  not  have a  value,  then 
use  the  access  procedure  to  compute a  value for  the 
target. Repeat  as long as  there  is a dependency whose 
sources have  values and target does not. 

If some  target concept remains  without a value, then 
reject the graph. 

If some target concept c has  been assigned  a  value 
that is not in the  set permissible  (sort ( c )  ) , then reject 
the graph. 

Otherwise,  accept  the graph as  an  answer graph. 

The  answer  graphs  are all well-formed conceptual 
graphs  because they are simply schemata with values 
assigned. The  question of whether  the  answer  graphs  are 
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all true  depends on the  adequacy of the original set of 
conceptual schemata.  Each  answer graph is a statement 
of some relationships  between entities  recorded in the 
data  base; if the  stored  data were correct  and if each of 
the original schemata  correctly  stated functional depen- 
dencies,  then their joins would also  state a correct  func- 
tional dependency. Possible errors could arise  because 
some combination of schemata might cause  the  selector 
concepts  (the indefinite concepts  such as HIRE in Fig. 
16) to  form unexpected paths  that  are not true.  The 
selector  concepts  are  necessary  to distinguish  different 
domain  roles  and to  select  the  correct  schemata  for  an- 
swering a given query.  In  order  to avoid  undesired com- 
binations,  however, the number of selectors should  be 
kept to  the minimum necessary  to distinguish the  do- 
main roles. An important topic for  further  study is a set 
of guidelines to help data  base  designers define schemata 
that avoid  such  combinations. 

If the  data  base  has a set of conceptual  schemata  that 
rule out  incorrect combinations,  then the  system  can 
answer a user's  question simply by picking the  correct 
answer graph. Unfortunately,  there  are  too many  possi- 
ble answer  graphs  to let the system generate them one  at 
a  time  and check them  against the  query graph. There- 
fore,  the  system must  be  more  selective and  join only 
those  schemata  that  have a good chance of leading to a 
satisfactory answer graph. The  next  four definitions  de- 
scribe an algorithm that  avoids  incorrect combinations 
and uses a set of preference rules as a  heuristic  guide for 
speeding  up  the search. 

Dejinition A query  graph is a well-formed conceptual 
graph with the following properties: it contains  no  quan- 
tifier or function  link, one  or  more of its concepts  have 
values,  one or more concepts  have a question mark,  and 
no concept  has both  a  value and a question mark. 

The  query graph is generated by the input analyzer 
from the  user's original question.  The  input  analyzer 
must have a  starting set of well-formed conceptual 
graphs  that  are compatible with the  data  base  schemata: 
every starting  graph  used by the input analyzer must  be 
coverable by a join with some schema in the schematic 
universe. This is a necessary condition for deriving an- 
swerable  query  graphs.  It is not a sufficient condition 
because  the  user  can always ask a question with  incom- 
plete  information; but, in that  case,  the  system should 
prompt him for  the missing information. 

Dejinition For a set of conceptual schemata S and a 
query  graph q, a working graph for q is any conceptual 
graph that may be obtained by the following operations: 

The  query graph q is a  working  graph for q. 

If w is a working  graph for q, ant d s is a schema in S ,  
then  the result of a schematic join either of w with it- 
self or of w with s is also a  working  graph for q, pro- 
vided that  no  concept  that  has a value is joined to a 
concept with a quantifier E' or  E-set,  no  concept  that 
has a value is restricted to a subsort  for which the val- 
ue is not permitted, and all values and  question marks 
in w are copied over  to  the  corresponding  concepts of 
the resulting graph  (some universal  quantifiers may 
therefore be replaced  with values). 

If w is a working  graph for q and the target of some 
functional dependency f in w has a question mark, 
then  the graph  obtained  by  adding question marks to 
every  source  off  that  does not have a value is also a 
working  graph for q. 

If w is a working  graph for q, all sources of some func- 
tional dependency f in w have values,  and the target of 
f does  not  have a value,  then the graph  obtained by 
evaluating the  access  procedure  for f ,  replacing the 
quantifier on  the target concept with the value,  and 
erasing the  question mark on  the target (if present) is 
also a  working  graph for 4. 

The working graphs  are  steps along the way towards 
answering a query.  The following theorem shows that 
when all the quantified concepts of a working  graph have 
been given values,  the resulting  values are  the  same  as 
those obtained  from  some answer graph. The theorem is 
general  enough to include  algorithms that permit joins 
arbitrarily remote  from  the original query graph as well 
as algorithms that  require  each  join  to  cover  at  least  one 
concept of the  query  graph. 

Theorem Let S be a set of conceptual schemata, q be  a 
query  graph, and w be a working  graph for q. If no con- 
cepts in w have quantifiers or question  marks  and if 
every  concept  and  conceptual relation of q has been 
covered by a join with some schema from S, then the 
values in w for  the  concepts of q having question marks 
are  the  same as those obtained by joining q to  some 
answer graph that  covers it completely. 

Proof Let sl, sz, ' . ., by the  sequence of schemata  that 
were joined  to q in deriving w. Observe  that  the  criteria 
for joining  a schema  to a working graph  are  stronger 
than  the  criteria  for a schematic join;  therefore,  the  sche- 
mata sl, s2, . . . may be  joined by schematic joins  to 
each  other in the  same  order and position that they were 
joined in forming w. The result of these  joins is a schema 
s that is isomorphic to w and  contains  the  same composi- 
tion of function  links  used to  derive w. Since w has  no 
quantifiers  left, the  query graph q must have had  values 
to assign to  each universal  quantifier of s, and  the  results 
of evaluating the  access  procedures must have  generated 351 
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values for  every existentially quantified concept.  There- 
fore, assign the values  from q to  the universal  quanti- 
fiers of s, and  evaluate all access  procedures  to  deter- 
mine values for  the  existentials;  the result is an  answer 
graph w’, which is isomorphic to w, has  the  same values 
for  corresponding  concepts,  but may have different sort 
labels because of the different order of performing  re- 
strictions. Since  the values generated  for w satisfied all 
the question marks of q, the  same values of w’ must also 
satisfy  them. Therefore, a join of q to  the  answer graph 
w’ would cover q and assign the  same values as w to  the 
question  marks of q. 

This  theorem  means  that  any algorithm  obeying the 
conditions for deriving  a  working  graph will generate a 
correct  answer  to a query provided that the  set of sche- 
mata  do not  permit incorrect  answer  graphs.  The  next 
definition states  preference  rules  for choosing between 
various  possible  schematic joins.  The  preference rules 
have  no effect upon the  correctness  or  incorrectness of 
the  answers  generated; they are heuristic  rules for en- 
couraging joins  that  have a good chance of answering 
the  question while avoiding paths  that  are  remote from 
the original question.  The  preference  rules lead to 
graphs with high ‘Isemantic density”  as in the  technique 
of preference  semantics  that Wilks [32] developed for 
analyzing  natural  language. 

Dejinition Let S be a set of schemata, q be a query 
graph, and w be  a  working  graph for q. Then if j is any 
schematic join  either of w with itself or of w with some 
schema in S, the preference  score for  the  join j with w is 
the sum of the points determined by the following condi- 
tions: 

Add a point for  each  concept in w that is covered by j .  

Add  an additional  point for  each  concept in q that is 
covered by j .  If this  value is zero, then  reject j .  

If a concept in w having a question mark is covered by 
a target of a function  link,  then add a point; if it is 
covered  by a source of a function  link,  then subtract a 
point. 

If a concept in w that  has a value is covered by a 
source of a  function  link,  than  add a point; if it is 
covered by a target of a  function  link, then  reject j .  

For  each  concept and conceptual relation in q that  has 
not yet been covered by any  join,  add a point if it is 
covered by j .  

If every possible join  has  been  rejected,  then  there is 
no preferred join. Otherwise,  the  one  or  more  schematic 
joins  with the highest preference  score  are preferred 
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The  preference  rules  are simply guidelines for  choos- 
ing between  alternative  joins. If they  require  too much 
computation  for a  particular  implementation, then  the 
rules may be modified or replaced  without fear of gener- 
ating incorrect  answers.  One way of speeding  up the 
search  for preferred joins is to index the  schemata ac- 
cording to  the  concepts they  contain: one index for  the 
selector  concepts of a schema,  another  for  the target 
concepts, and another  for  the  source  concepts.  Then, 
instead of computing preference  scores  for all possible 
joins,  the  system could pick a  question  mark in the 
query graph,  look in the index for a target concept  that 
had  a  common subsort,  and  choose a join with that sche- 
ma if its preference  score  was  above a  given threshold. 

Dejinition Let S be  a set of schemata  and q be a query 
graph.  Then  the following procedure  for generating 
working graphs  for q is called algorithm C: 

w: = q ;  
while (there is a preferred  join j with W )  

do  begin 
w: = result of performing j with w; 
while (there is a source  concept a in w 

& a does  not  have a value 
& a does  not  have a question mark 
& the target of a has a question  mark) 

do place a question mark on a; 
while (there is a target  concept b in w 

& b has a question mark 
& all sources of b have  values) 

do get a value  for b from its  access  procedure; 

and all  of q has been covered by some join) 
if (there  are  no question marks left in w 

then  begin 
print answer; 
stop 
end 

end. 

If there  are  any  question marks left on w and  no pre- 
ferred  joins  to perform, then  each universally quantified 
concept having a question mark is called a prompting 
point. 

A  prompting  point is where  the  system begins  when it 
asks a  question to  get  further information. This method 
of prompting is similar to Heidorn’s technique in his 
simulation system.  Without prompting,  algorithm C is  not 
able  to  generate all possible answer  graphs  because  each 
preferred join  must  cover at least  one  concept of the 
query  graph;  questions  that  require  remote  searches 
cannot be answered automatically. Furthermore, algo- 
rithm C does  no backtracking; in cases  where  the  set of 
schemata permit many possible  combinations, the algo- 
rithm might try one combination that would preclude 
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others. If there  are no question marks left on  the working 
graph  but not all of the query graph  has  been  covered by 
some join,  then  either  the original query  contained ir- 
relevant  information or  the  system has  found an alterna- 
tive path through the  data  base  that  answers a question 
different from  the  one  the  user  asked.  In  such  cases,  too, 
it would require help to  get  out of its  predicament. 

A system based on algorithm  C would do what it was 
told explicitly and  whatever was  obviously implied by 
what it was told. Whenever it could not find an  obvious 
solution to a  problem, it would come  back  and  ask  for 
further  instructions. A system  that  searched  one level 
deep would relieve the  user of the need to specify  much 
tedious detail, and  it could still answer arbitrarily com- 
plex questions with  some  prompting.  Although one 
could relax the  preference rules to let the  system  search 
deeper,  further searching would increase  the  system 
overhead without  substantially  improving its usefulness. 
As  the example in the  next section shows, algorithm  C 
can generate sophisticated  inferences without a great 
deal of searching. 

By computing an  answer graph, the  system  can  deter- 
mine the  state of some  entities in the  data  base in answer 
to a specific question. If the  user had asked a question 
containing Boolean connectives,  the  system would have 
to  generate  separate  answers  for  each  part of the  ques- 
tion and  then combine  them  according to  the  type of 
connective. If instead of asking about a specific entity 
such  as  PERSON:Lee,  the  question had been about all 
persons having a certain  attribute, then the system 
should not  compute  an  answer  graph with specific values 
for  the  concepts;  instead, it should generate a schema 
that could be  repeatedly  evaluated  for  every  person. 
Any  method,  such  as algorithm C,  that  can  be used to 
generate specific answer graphs can  also be  used to  de- 
termine a schema simply by erasing the  values  on  the 
answer graph  and  saving  the  functional dependencies. A 
schema with  its access  procedures is a  specialized  pro- 
gram for answering query  graphs of a  particular shape; 
once  the  schema  has been  found, it can be  evaluated for 
every element of a set. With extensions  for Boolean 
connectives and repeated evaluations over  sets,  concep- 
tual graphs could  form the basis of a  general data  base 
query facility. 

Example 
Suppose a computer  user typed in the question “What 
was Lee’s  age  when  hired?” If the  system had  a  relation 
for all employees and their ages at time of hire, it could 
immediately find the  answer.  In most systems, however, 
that question would not be asked often  enough to justify 
space  for everybody’s  age when hired. To get  an  answer 
to  that simple question, the user would have  to find 
Lee’s  date of birth from  one relation, find his date of hire 

I 
AGE: ? TIME 

Figure 20 Query graph for “What was  Lee’s  age  when hired?” 

from  another relation, and then call a  function to sub- 
tract  the  two  dates. A system having conceptual  graphs 
for its user  interface, however,  could accept  the question 
as  stated in English and determine  for itself what  rela- 
tions and  procedures  to  access. 

Assume  that  the input analyzer  can  translate  the 
user’s  question into  the  query graph  shown in Fig. 20. 
The  concept  PERSON  has  the value Lee,  and the  value 
of AGE is to be determined.  The  conceptual relation 
CHRC has been borrowed from the TORUS system; it 
may be  read  “is a characteristic of.” To determine which 
relation to  insert  between  PERSON and AGE,  the input 
analyzer would follow the rule that  the preposition “of” 
or the  possessive  case  marker ‘“s” indicates an unspeci- 
fied relation between  two  nouns;  the  analyzer would 
search through its starting set of conceptual graphs  and 
find CHRC  as  the default  relation between AGE and 
PERSON.  The conceptual  relation A T  is used for 
moments of time;  the relation LOC is used for spatial 
locations. The input analyzer will translate  phrases of 
the form ‘‘X when y” into a graph were x and y are shown 
to  occur  at  the same time. Since  “hired” is a  passive 
participle, PERS0N:Lee is linked as  the patient of 
HIRE; for  the  question  “What was  Lee’s  age  when hir- 
ing?” PERS0N:Lee would be the  agent of HIRE. 

Since  the  question mark on AGE cannot be  propagat- 
ed  anywhere,  the  system must find some  schema  to  join 
to  the  query  graph.  It naturally starts with the  concept 
AGE, which has  the question  mark, and  searches  for a 
schema in which AGE is functionally dependent  on 
something that is computable. Figure 21 shows  such a 
schema, which  gives the definition of AGE.  Associated 
with  this schema  are  access links to a data  base relation 
for a person’s date of birth and  an  access  procedure  that 
computes  the difference of two  dates. 

The definition of AGE is in second  normal form,  but 
not third  normal  form because  there is a  transitive de- 
pendency of AGE upon DATE and  then  upon PER- 
SON. The  BIRTH relation in the  data  base,  however, 
may be stored in third  normal  form if convenient.  This 
example illustrates the point that a schema may present 
a view of the  data  base different from the  one that is ac- 
tually stored. A  complex schema  can  sometimes im- 
prove efficiency by  reducing the  number of steps in a 
data  base inference. 353 
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Figure 21 Schema  for defining AGE. 

PERSON AGE DATE 

Figure 22 Maximal  common  projection of Figs. 20 and 21 

Since DATE < TIME, Fig. 22 is a maximal common 
projection of the query  graph with the  schema in Fig. 21 
having as a  kernel  the three  concepts  AGE.  To  compute 
the  preference  score  for  the  join  on this  common  projec- 
tion, the system would add 3 points for  the  three  con- 
cepts  covered by the  join, 3 more  points because all 
three  concepts  are in the  query  graph, 1 point because a 
concept with  a question mark is covered by a  target 
concept, 1 point because a concept with  a  value is 
covered by a source,  and 5 extra points because five 
concepts and  conceptual  relations of the  query graph 
that had not previously been covered  are  covered by  this 
join; the  total  preference score is 13. A join with the 
schema  for HIRE  (Fig. 16) would have a score of 12; it 
is almost as  good, but the  join with Fig. 21 is the pre- 
ferred join. 

The schematic join of Fig. 21 with the  query graph is 
the working  graph in Fig. 2 3 .  In forming the  join,  the 
universal  quantifier on  PERSON is replaced  with the 
value Lee, and the universally quantified concept DATE 
replaces the indefinite concept  TIME.  The  question 
marks  are propagated from  targets  to  sources of func- 
tional dependencies, according to algorithm C. 

When the  question mark reaches  PERSON:Lee,  the 
system  can use the  access links to find Lee’s date of 
birth  from the  data  base.  This value will satisfy one  ar- 
gument of DIFFERENCE.  The  other  argument, how- 
ever,  has a question  mark that  cannot be  propagated fur- 
ther.  The  system must find a schema in which the  con- 
cept  DATE is functionally dependent  on  some  concept 
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Fig. 16 for  the  data  base relation HIRE meets these cri- 
teria, and  a join with Fig. 16 is now the preferred join; 
its  preference score would be I 1.  The  schema in Fig.  2 1 
could  not  be joined again to  the working  graph in the 
same position as before, because a maximal join would 
cause two  existential  quantifiers to be joined,  and such 
joins  are prohibited by the  rules  for a schematic join. 
When the schematic join of Figs. 16 and 23 is performed, 
PERS0N:Lee is restricted to  EMPL0YEE:Lee.  The 
system must therefore  check  the  data  base  to  determine 
whether  Lee is an  employee; if he is, the  system  can  de- 
rive Fig. 24. 

When the  schema  for HIRE is joined  to  the  graph, the 
question mark on DATE is propagated  back to  EM- 
PL0YEE:Lee.  Since  the  source of the functional  de- 
pendency  has a  value, the  system can access  the  data 
base  to find Lee’s date of hire. Now both arguments of 
DIFFERENCE have values, and  the  access  procedure 
can  compute Lee’s  age. Note  that  the  HIRE  schema 
contains information about  the manager,  which is irrele- 
vant to  the  current  question;  since it is not needed, it 
would not be evaluated. A  good property of this  tech- 
nique is that  schemata can  be  arbitrarily complex, and 
the  system will simply ignore the unneeded  information. 

Once  the  answer  has been generated,  the functional 
dependencies in Fig. 24 are  no longer needed. But if the 
user wanted to know the age  when hired for Smith, 
Jones,  and  others, then the  system should save  the 
dependencies.  The  concepts  and  conceptual relations 
define the meaning of the  domains and  their  interrela- 
tionships;  the functional dependencies  are a data flow 
graph for computing the  actual values. If the  same func- 
tion is to be  evaluated  repeatedly, the  system could 
erase  the  current  set of values and  compute new  values 
using the  same functional dependency  graph.  For optim- 
ized execution,  the  system could even compile the func- 
tional dependencies  into COBOL or pL/I. 

Towards  a natural  interface 
As a computer interface, English has been  much ma- 
ligned for its supposed wordiness. Part of the blame for 
the bad reputation must  be borne by “English-like’’ lan- 
guages, such  as COBOL, which  often do little but  pad  a 
formal  notation  with English prepositions. One  query 
language, for  example, has the following notation: 

SKILFILE  JOBCODE  EQ  ‘ENG’ 
SKILCODE  EQ  ‘GERMAN’ 
LOC  EQ  ‘NY’ 
LIST  EMPLOYEE  MANNBR  DEPT  SVCYRS. 

The language has a macro facility that  can  provide an 
English-like interface. When the  necessary  macros  have 
been  defined, the  system can translate  the following 
English sentence into the  above notation: 
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From  the skills inventory get me the  name, man number, 
department, and years in service of the engineers with 
knowledge of German located in the  New  York  area. 

For a practical system,  such a  half-hearted approach  to 
English is useless. Whereas  macros generally reduce  the 
amount of typing,  this  macro is 74% longer  than the 
formal  notation. Furthermore,  the  phrase  “From  the 
skills inventory” may be easier  to read than “SKIL- 
FILE,”  but it is no  easier  to  remember.  The  macro lan- 
guage requires  every  phrase  to  be defined by  a  unique 
rule;  “years in service” is translated to  “SVCYRS” by 
one rule, but  “years of service” would require a separate 
rule.  A more natural  interface  should accept  the follow- 
ing request: 

For  engineers in New  York  who know German, list 
name, man no., dept.,  service  years. 

This  sentence is shorter than the formal  notation and is 
easier  to read  than the English-like macro. It is also  eas- 
ier  for  the  user  to learn because it omits  the file name 
“SKILFILE” and does  not use the  odd abbreviations 
“MANNBR”  or  “SVCYRS.”  Because it omits  the file 
name, it cannot be  translated to  the formal  notation by a 
change of syntax;  instead,  the  system must use semantic 
mechanisms like the  conceptual  schema, which deter- 
mine system  dependencies  as a result of processing the 
English sentence. 

Although the  above example  required fewer key- 
strokes  for  the English syntax  than  for  the formal nota- 
tion, the primary advantage of natural  language is not in 
syntax but in semantics. During  a conversation,  the 
most important  semantic  features  appear in dialogue, 
inference, and metalanguage: 

Dialogue Natural languages are used in a  dialogue 
where both  parties contribute  to  the  conversation and 
ask  questions to clarify or expand an incomplete  mes- 
sage. 

Inference Most  sentences can  be short and  simple 
because  the listener is expected  to fill in the  “ob- 
vious” gaps. A complete  theorem proving system is 
not  necessary  to  understand English, but a  technique 
for inferring the  obvious is essential. 

Metalanguage English is its own metalanguage. It  can 
be used either  to talk about a  subject or to talk about 
what  can be  said about  the  subject; it can  therefore 
support prompting and help  facilities in the  same lan- 
guage used for  queries and programming. 

These  three  features of natural  language are  the  areas 
where  conceptual  graphs can make  the biggest contribu- 
tion. Inference was  emphasized in this paper,  but con- 
ceptual graphs  can  also help in dialogues and metalan- 
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Figure 24 Final  working graph. 

guage. Prompting methods  have  already been men- 
tioned, and  many of Heidorn’s  dialogues can be adapted 
to  conceptual  graphs with  little  more than a  change of 
notation. For help  facilities, the  same  conceptual  sche- 
mata used to  access  the  data  base could  be  translated 
into English sentences  to  answer a  user’s questions 
about command and  data  formats. By using the  same 
schemata  for accessing data  and  for generating mes- 
sages,  the  system would guarantee  that  the diagnostic 
and help  facilities would always be consistent with the 
implementation. 355 
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Codd [33] emphasized the importance of a  natural 
language interface  for  the casual user.  Yet  even  the  most 
experienced system programmers  write comments in 
their native language because they find it more  under- 
standable and  expressive than  a programming language. 
The  same  properties  that make English good for  queries 
also make it good for programming: the abilities to sup- 
port a dialogue for problem  definition, to  take  care of 
machine dependent  details  without  the  user’s  assistance, 
and  to  answer  questions  about  formats  and  conventions. 
A  program to be executed in batch  mode,  where perfor- 
mance is critical,  should  not go through an  interpretive 
natural  language  interface for  every  data  base  access; 
instead,  the programmer  could  use that interface while 
writing the program  and  then have  the  system compile 
the  accesses  into a standard language for optimized exe- 
cution. 

Suppose a  programmer asked  “Give me a COBOL pro- 
cedure  to  compute a person’s age  when hired.”  For this 
case,  the system would not derive  an  answer graph  from 
the  data  base.  Instead, it would derive a general schema 
for computing age when hired for  any  person.  Every 
schema in the  schematic universe is a  general function. 
For a one-shot  query,  the system uses  the  schema only 
once; but for  automatic programming, the  system could 
compute a schema as though it were  answering a query 
and  then translate  the  schema into a program. Instead of 
immediately  executing the calls  upon access  procedures, 
the  system could compile  them  into COBOL statements, 
which the programmer  could  insert into a program for 
batch  execution.  The programmer could use  the  query 
facility as a programming assistant  that would handle the 
machine dependent  details of data  base  accesses. 

For a system of distributed computers,  conceptual 
graphs  can support a  clean separation  between  the mes- 
sage handling and the  data  base  accesses.  Instead of 
calling the  access  procedures  for  each value requested 
for some  target concept, algorithm  C could be modified 
to make all of the  accesses  at  the  end of the derivation. 
If the  data  base  processor is in a  different computer from 
the  input  analyzer, all of the prompting and interaction 
could  be  handled by a local computer, and only a list of 
specific accesses would need to be sent  to  the  data  base 
processor.  This  separation would be especially useful if 
the  data  base had a  relatively small number of relations, 
but a very large number of entries in each relation:  a 
computer  that did message  handling would only  need a 
few schemata  that could  be stored  on an ordinary disk, 
but the  data  base  processor would require a  mass stor- 
age  facility. 

Conceptual  graphs  are precise  enough to  support logi- 
cal inferences and  data  base  accesses,  yet they are rich 
enough and flexible enough to  serve  as a semantic basis 
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be  used  directly by the  data  base designer for  represent- 
ing and analyzing  relationships between various domains 
in the  data  base; displays  and plotters could present  the 
graphs  for a  two-dimensional view of the  data base. The 
designer could see  the  graphs  on a display, but the end 
user would not be  aware of them. Instead,  conceptual 
graphs could support  an interface that would let the  user 
talk about familiar data in a  familiar  terminology  without 
the need for special query languages  and computer- 
oriented  conventions. 
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