
John F. Sowa

Conceptual Graphs for a Data Base Interface

Abstract: A data base system that supports natural language queries is not really natural if it requires the user to know how the data
are represented. This paper defines a formalism, called conceptual graphs, that can describe data according to the user’s view and ac-
cess data according to the system’s view. In addition, the graphs can represent functional dependencies in the data base and support in-
ferences and computations that are not explicit in the initial query.

Introduction
Historically, data base systems evolved as generalized
access methods. They addressed the narrow issue of
enabling independent programs to cooperate in access-
ing the same data. As a result, most data base systems
emphasize the questions of how data may be stored or
accessed, but they ignore the questions of what the data
base means to the people who use it or how it relates to
the overall operations of a business enterprise. When a
business converts from a manual system to a computer-
ized system, the computer cannot adapt itself to the users’
view of the world, and the people have to learn strange
conventions to access their familiar data.

Before a computer can adapt itself to a person’s world
view, that view must be described in a formalism that
the computer can process. The conceptual graphs de-
fined in this paper provide a formal notation that serves
as an intermediary between the human and the com-
puter: the graphs describe the meaning of data according
to the user’s view, but they are also associated with pro-
cedures that can access the data according to the ma-
chine view. When a person asks a question in ordinary
English or other natural language, the system would
translate the question into a conceptual graph. Then the
system could search for other graphs that describe the
data base and are relevant to the original question. When
it finds such graphs, it can use them to access the data
and compute the answer.

Conceptual graphs are not intended as a means of
storing data but as a means of describing data and the
interrelationships. As a method of formal description,
they have three principal advantages: First, they can
support a direct mapping onto a relational data base as
defined by Codd [11 ; second, they can be used as a
semantic basis for natural language; and third, they can

been shown by the TORUS system at the University of
Toronto [2], which uses a representation similar to the
one developed here. The second point has been investi-
gated in a growing body of research in computational
linguistics and artificial intelligence; for a survey of that
work, see the article by Heidorn [3] and the collections
of papers edited by Schank and Colby [4] or Bobrow
and Collins [5] . The third point is the principal topic of
this paper: Besides representing logical relations in a
conceptual graph, the system must use the graphs to per-
form inferences that answer the original question.

Since relational data bases have a simpler logical
structure than network or hierarchical systems, they are
an important first step toward simplifying the user’s in-
terface. Relations are a good interface for a professional
programmer, and they can also be used by nonprogram-
mers who are familiar with the data base conventions.
Several query languages, such as SEQUEL [6], SQUARE

[7], and Query-by-Example [8], have been designed for
nonprogrammers who have been trained in using the
data base. But casual users and even programmers who
had not learned the conventions would require a consid-
erable period of training before they could ask a ques-
tion.

Figure 1 shows a sample relation in a form that might
be presented to a user of a relational query language.
The name of the relation is HIRE, and its domains are
named EMPLOYEE, MANAGER, and DATE. Under
the domain headings are the n-tuples for which the rela-
tion is true. A person familiar with the real world system
could probably guess that the three domains represent
an employee, the manager who originally hired the em-
ployee, and the date the employee was hired. But there
is no information in the relation that excludes other in-

Support automatic inferences to compute relationships terpretations, such as, for each manger, the date he first
336 that are not explicitly mentioned. The first point has became a manger and the first employee he hired. For a

JOHN F. SOWA IBM J . RES. DEVELOP. I

complex data base with dozens of relations, few users
can correctly guess the meaning of every domain in
every relation.

The meaning of a relation is called its intension, and
the set of all the n-tuples stored in the data base is called
its extension. The question of representing extensions,
accessing them, and modifying them is the familiar one
that all data base systems address. The question of rep-
resenting intensions, however, tends to be ignored,
largely because adequate formalisms and techniques for
handling them have not been available. For a data base
system, the three principal kinds of intensional informa-
tion are the functional dependencies, the domain roles,
and the constraints on domain values. In a data base re-
lation, functional dependencies indicate which domains
are permissible keys and which domains are dependent
upon the keys; for the relation in Fig. I , EMPLOYEE is
the key domain, and the domains MANAGER and
DATE are determined when EMPLOYEE is specified.
The domain roles indicate how the domains are related;
for Fig. 1 , the MANGER of each n-tuple performs an
act, HIRE, the EMPLOYEE is the one who is hired,
and the DATE is when the particular act occurred. The
constraints indicate permissible values; for Fig. 1, they
would specify the expected form of a name or date, the
requirement that no date of hire may precede the date
the company was founded, and the constraint that no
person may hire himself.

Besides representing intensions, the system must use
them to provide a more natural interface and to check
the plausibility of new information that is being added.
This paper defines conceptual graphs as an intensional
formalism and shows how they might be used to meet
the following requirements:

Familiar conventions A person who knows the forms
and procedures of a business enterprise should be
able to ask questions about it without having to learn
the peculiarities of the computer system.
Automatic inference The system should infer rela-
tions that are not stored explicitly in the data base.
Naturalness The intensional formalism should be
close enough to the semantics of natural language to
support convenient dialogue and prompting facilities.
Semuntic integrity The domain constraints should help
to keep the data base an accurate reflection of the
real world.

These are requirements for the user's interface; the
physical implementation must also satisfy other criteria,
such as speed and reliability. By separating the concep-
tual graphs that describe the meaning of data from the
system that stores and accesses data, the two problems
can be addressed independently. Efficient storage alloca-
tion or means of recovery after a system crash must be

MANAGER

Mary Smith John Brown 9/1/10
I Tom Jones

Mary Smith 8/8/75

Figure 1 The HIRE relation.

p z q pzq -1 -1
Figure 2 Examples of concepts.

supported by the underlying data base system; what the
data mean should be described by an intensional formal-
ism at the interface to the data.

To meet these requirements, conceptual graphs are a
network of concepts and conceptual relations that de-
scribe the domain roles. Certain conceptual graphs, the
conceptual schemata and working graphs, have a super-
imposed network of functional dependencies that are
mapped to the data base. To answer a user's question,
the system assembles a working graph that has the
appropriate domain roles together with functional depen-
dencies that determine the answer. The next several
sections of this paper define these structures formally,
present an algorithm for computing the working graphs,
and give an example of how the system would process a
typical question.

Conceptual graphs
In the theory of conceptual graphs, the basic primitive is
called a concept. It is represented by a box containing a
sort label, which identifies the type of concept. For read-
ability, sort labels are written as English words in upper
case letters, but they could just as well be numbers or
computer addresses.

Formally, a concept is an undefined primitive. Infor-
mally, it is a symbol that could represent anything that
anyone might ever think of-an entity, action, or proper-
ty in the real world, an abstraction, fantasy, or mathe-
matical function. Some concepts are shown in Fig. 2.
For those aspects of the world recorded in the data base,
at least one concept is defined for every data base do-
main. Some concepts are more general than others: the
sort label PERSON marks a more general concept than
EMPLOYEE, and EMPLOYEE is more general than
MANAGER. To represent the levels of generality, the
sort labels are ordered.

Definition There is a set S whose members are called
sort labels, with a partial ordering 5 defined upon S.
The function sort maps concepts into sort labels. If a
and b are concepts for which sort (a) 5 sort (b) , then
a is said to be a subsort of 6. 337

:ONCEPTUAL GRAPHS JULY 1 916 (

+”++”+*
Figure 3 Examples of conceptual relations

BOY WALK

IDEA SLEEP

(b)

Figure 4 The conceptual graph (a) is well-formed while the
graph at (b) is ill-formed.

HIRE PERSON

subsorts: LION, TIGER, and JAGUAR are all com-
mon subsorts of FELINE and WILD-ANIMAL. Not
all pairs of concepts have common subsorts: NUMBER
and EMPLOYEE have no common subsort [9] .

Connections between concepts are represented by
conceptual relations, which are written as labeled circles
having one or more links. The links are numbered con-
secutively, starting with 1 ; for the special case of dyadic
conceptual relations, an arrowhead pointing towards the
circle indicates link 1, and an arrowhead pointing away
indicates link 2.

The examples in Fig. 3 show some common concep-
tual relations. The relations AGNT and PTNT have
been adapted from case grammar [101: AGNT (or
AGENT) links a concept representing an animate entity
to a concept of an action that the entity is performing;
PTNT (or PATIENT) links an action to an entity that
is being acted upon. Besides linguistic cases, conceptual
relations can represent mathematical or computational
notions: RES (or RESULT) links a concept represent-
ing a function to a concept representing the result of the

conceptual relations has no formal significance in the
DATE HIRE EMPLOYEE function. As with sort labels, the choice of labels for

Figure 5 Two well-formed conceptual graphs theory, but a readable set should be chosen for a given
application [1 1 1.
Definition A conceptual graph is a finite, connected,

Since a concept is not a set, one concept cannot be a
subset of another concept. Yet subsorts and subsets are
closely related: If u is a subsort of b, as the concept
EMPLOYEE is a subsort of the concept PERSON,
then the set of all things to which a applies is a subset of

undirected, bipartite graph with nodes of one type called
concepts and nodes of the other type called conceptuul
relations. A conceptual graph may consist of a single
concept, but it cannot have conceptual relations with
unattached links.

the things to which b applies. Since a concept is an in- In the operations defined upon conceptual graphs,
tensional symbol, not an extensional set of things, the links may be attached or detached from concepts, but
principle of extensionality does not hold: Two concepts they are permanently bound to conceptual relations.
with different sort labels are distinct, even if they repre- Only dyadic conceptual relations are used in the exam-
sent exactly the same things in the data base. Even if ples in this paper, but the definitions and theorems allow
every person mentioned in the data base happens to be arbitrarily many links.
an employee, the meaning of employee includes addi-
tional relationships beyond those that are true for per-
sons in general. Following are some examples of the
ordering of sort labels:

Definition A conceptual relation has a certain number of
links, which may be attached to concepts. If a concep-
tual relation has n links for some integer n 3 1 , it is
called n-udic, and its links are numbered 1 , . . ., n.

MANAGER < EMPLOYEE < PERSON
< ANIMAL < ENTITY

HIRE < ACT < EVENT, DATE < TIME

Formation rules
Not all combinations of concepts and conceptual rela-
tions are meaningful; the data base designer must have a

Ordering symbols other than 5 are defined in the ob- way of declaring certain combinations well-formed and
vious way; i.e., x < y if and only if x 5 y and x # y . other combinations ill-formed. Figure 4 (a) shows a well-

Dejinition The concept c is called a common subsort of
formed conceptual graph, which represents the phrase

the concepts a and b if sort (c) 5 sort (a) and sort (c) “boy walking.” The graph in Fig. 4 (b) is an ill-formed

5 sort (b) . combination, taken from Chomsky’s famous example
“Colorless green ideas sleep furiously.”

FIXED-BINARY is a common subsort of FIXED Well-formed conceptual graphs are like well-formed
338 and BINARY. Two concepts may have many common formulas in symbolic logic or grammatical sentences in

IOHN F. SOWA I B M J. RES. DEVELOP.

English. They are not necessarily true or even plausible,
but they rule out some nonsensical combinations. To
distinguish the well-formed conceptual graphs, there are
formation rules that generate all of the well-formed
graphs but none of the ill-formed ones. The data base
designer must prime the system with a starting set of
conceptual graphs, which are all well-formed by defini-
tion. Every other well-formed graph is generated by re-
peated applications of four basic rules.

Assumption The system has a collection of conceptual
graphs that are defined as well-formed. Every graph con-
sisting of a single concept is well-formed. All other well-
formed conceptual graphs are obtained by repeated
application of the following rules:

1. Copy An exact copy of any well-formed conceptual
graph is well-formed.

2. Detach All connected graphs that remain when any
conceptual relation is removed from a well-formed
conceptual graph are also well-formed.

3. Restrict If a is a concept in a well-formed conceptual
graph u, then for any sort label s 5 sort (a) , the graph
obtained by substituting s for the sort label of a is
well-formed.

4. Join Let a be a concept in a well-formed conceptual
graph u and b be a concept in a well-formed concep-
tual graph w, where u and w may be the same graph.
Then if sort (a) = sort (b) , u and w may be joined to
form a well-formed conceptual graph u by deleting a
from u and attaching to b all the links of conceptual
relations in u that had previously been attached to a.

To illustrate the formation rules, Fig. 5 presents two
conceptual graphs that are assumed to be well-formed.
The first graph may be read as “A manager hiring a cer-
tain person,” and the second as “An employee being
hired at a certain date.”

Since both graphs in Fig. 5 have a concept with sort
label HIRE, they may be joined by deleting one of the
concepts with label HIRE and attaching the two dan-
gling links to the corresponding concept in the other
graph. This operation produces the graph in Fig. 6.

Since two concepts can only be joined when they have
identical sort labels, the sort label PERSON in Fig. 6
would have to be restricted to EMPLOYEE, as in Fig.
7 , before it could be joined to the other concept labeled
EMPLOYEE.

Since Fig. 7 now has two concepts with identical sort
labels, they may be joined by deleting one of them and
attaching the dangling link to the other one.

According to the detach rule, one of the two copies of
PTNT in Fig. 8 may be removed to form the graph in
Fig. 9. This graph may be read “A manager hiring an
employee at a certain date.”

JULY 1976

HIRE PERSON

/\

Figure 6 A join of the graphs in Fig. 5

Figure 7 A restriction of the graph in Fig. 6.

Figure 8 A join of two concepts in the same graph.

Figure 9 Final graph obtained by detachment.

With an appropriate set of starting graphs, the forma-
tion rules generate graphs that may be considered
“grammatically correct.” But grammar rules are not
rules of inference: formation rules generate syntactically
well-formed combinations; inference rules generate
combinations that are true if the assumptions are true. In
defining the rules of a formal system, a logician has vari-
ous options for assigning a construct either to the forma-
tion rules or to the rules of inference. Sorted logic
[12, 131 differs from the standard predicate calculus by
incorporating sorts into the formation rules; as a result,
it often has simpler formulas and shorter proofs. The
sort labels on concepts make the formation rules more 339

CONCEPTUAL GRAPHS

PHYSICAL-BEING

ANIMAL SLEEP

Figure 10 Sample starting graphs.

COLOR SLEEP

Figure 11 Graph derived from Fig. I O .

complex, but they sharply reduce the number of alterna-
tives to be considered in performing inferences.

To show how the formation rules impose constraints
on a derivation, take the two graphs in Fig. 10 as a start-
ing set. Since ANIMAL < PHYSICAL-BEING, the
sort label PHYSICAL-BEING in the first graph can be
restricted to ANIMAL. Thep the two graphs can be
joined on ANIMAL to form the graph in Fig. 1 1 .

This graph can be further restricted to form graphs for
the sentences “A brown beaver sleeps” or “A purple
cow sleeps.” But since IDEA is not a subsort of ANI-
MAL nor of PHYSICAL-BEING, there is no way of
deriving “A green idea sleeps.” The formation rules thus
eliminate nonsensical things like green ideas, but they
allow conceivable, nonexistent things like purple cows.
The rules for handling subsorts impose the same kinds
of constraints as the semantic markers used by Katz and
Fodor [141. The partial ordering of subsorts, however,
is more general than semantic markers: besides binary
distinctions, a partial ordering may include arbitrary
trees and lattices.

The rules presented so far place no restrictions upon
the starting set of well-formed conceptual graphs: any
combination of symbols that anyone might ever think of
could be represented as a conceptual graph. In setting
up a query facility, the data base designer would select a
set of concepts for all the domains in the data base, aux-
iliary concepts for real world characteristics related to
those domains, and other concepts for functions that
might be applied to values in the domains. Since few
data base designers are trained linguists, a practical sys-
tem would have to be primed with a basic set of con-
cepts for common English words, a set of conceptual
relations for linguistic cases and mathematical relations,
and a set of tools and questionnaires for automating the

Derived formation rules
The basic formation rules operate on one concept at a
time; derived formation rules are sequences of basic
operations that do a complex derivation in one step.
There are two reasons for having the derived rules: the-
oretically, they can simplify the definitions and shorten
the proofs; and practically, the combined operations can
eliminate intermediate computations and improve sys-
tem performance. The first derived rule is projection,
which extracts a subgraph from a conceptual graph and
then restricts some of the concepts in it. Another de-
rived rule is the join of two graphs on a common projec-
tion, which allows the graphs in Fig. 5 to form the graph
in Fig. 9 in a single step. A special case of this rule is
maximal join, where the common projection is as large
as possible; maximal joins are important in the algorithm
for answering a data base query.

Definition A well-formed conceptual graph u is a projec-
tion of a well-formed conceptual graph w if u can be de-
rived from w by zero or more applications of detachment
and zero or more applications of restriction, but no ap-
plication of join.

Each detachment reduces the size of the resulting
graph by at least one conceptual relation. I t may also
cause the graph to become disconnected, and thereby
create several well-formed conceptual graphs, each with
fewer concepts and conceptual relations than the origi-
nal. Each restriction leaves the number of concepts and
relations unchanged, but it makes the graph more spe-
cialized. None of the formation rules allow a restriction
to be undone to return to the original, more general
graph.

Theorem If u is a connected subgraph of a well-formed
conceptual graph w, then u is a projection of w that can
be derived from w solely by the rule of detachment.

Proof Apply the rule of detachment to each conceptual
relation of w that is not in u. All the graphs that remain
are, by definition, projections of w. Since u is connected
and none of its conceptual relations were detached, u
must be wholly contained within one of those projec-
tions. That projection cannot contain any conceptual
relation not in u since all of them were detached. Fur-
thermore, it cannot contain any concept not in u since
each such concept would have to be attached to a concept
of u by some conceptual relation not in u. Therefore, that
projection must be u.

task of defining conceptual graphs. Much work remains If two isomorphic graphs were drawn carefully on
to be done before the definition of a language can be transparent plastic sheets, one graph could be overlaid
reduced to filling out a questionnaire, but the purpose of on the other with a perfect match: all concepts, concep-
this paper is to present a formalism that may help to sys- tual relations, and links would line up exactly. The next

340 tematize that job. theorem shows that a projection of a graph can be over-

JOHN F. SOWA IBM J. RES. DEVELOP.

laid on some subgraph of the original; the matching con-
ceptual relations would be identical, but some or all of
the concepts in the original would correspond to sub-
sorts in the projection.

Theorem If u is a projection of w, then there is an iso-
morphism + that maps u onto a connected subgraph w'
of w : if u is any concept of u, then a is a subsort of + (a) ;
if r is any conceptual relation of u, then Y = + (r) ; and
if the ith link of r is attached to ai, then the ith link of
4 (r) is attached to C#J(ui).

Proof Since u may be derived from w, there must be a
finite sequence of applications of detachment and re-
striction, A', A', . . ., leading from w to v. Construct
two series of well-formed conceptual graphs u l , u2, . . .,
and wl, w2, . . ., and a series of isomorphisms between
them +', 4'; . .. Let u1 = w1 = w , and let 6' be the identity
mapping from u1 to w'. Then if the ith rule Ai was
detachment, perform that rule on both ui and w i to derive
vi+' and wi+', and let +"' = 4'. Or if Ai restricts some
concept a to one of its subsorts b, then apply A' to ui
to derive vi+' , let wi+l = w', and let 4"' (b) = + ' (a) ,
but let 4'" have the same value as +' for all other con-
cepts and conceptual relations in vi+'. At each stage ih
the derivation, +'*' will be an isomorphism from vi+' to
1 1 % satisfying the conditions of the theorem if the con-
ditions held for i. Since they hold for 1, they must, by
induction, hold for all i. The conditions must therefore
hold for the last members of the series, which are u, w ' ,
and 4.

i + l

This theorem implies that a projectim of a conceptual
graph can be overlaid on some subgraph of the original.
That subgraph is called a projective origin of the projec-
tion. A given projection may have more than one possible
projective origin. Suppose, for example, that the concept
c was a common subsort of several different concepts in
a graph u ; then the concept c by itself would be a projec-
tion of u, and every concept in u of which c was a sub-
sort would be a projective origin of c.

Dejinition If u is a projection of w, then a subgraph of w
that is isomorphic to u under the conditions of the pre-
ceding theorem is called a projective origin of u in w.

The definition of projection would allow the detach-
ments and restrictions to be applied in any order. The
next theorem shows that the same projection could be
derived in a standard order that first applies all detach-
ments and then applies all restrictions.

Theorem If u is a projection of w, then u can be derived
from u' by first detaching conceptual relations to form a
projective origin of u in w and then performing a series
of restrictions on concepts of the projective origin to
derive u.

Proof Since a projective origin of u in w is a connected
subgraph of w, it must be a well-formed conceptual
graph that is derivable from w solely by detachment.
Then to derive u, restrict each concept of the projective
origin to the concept in u to which it is mapped by the
isomorphism.

Dejinition If u and w are well-formed conceptual graphs,
u is a projection of u, and u is a projection of w, then u is
called a common projection of u and w.

Theorem If u is a common projection of u and w, then
the projective origin of u in u is isomorphic to the projec-
tive origin of u in w.

Proof Two graphs that are isomorphic to u must be
isomorphic to each other.

If two graphs have a common concept, the join rule
allows them to be combined by merging the two com-
mon concepts. That simple join on a common concept
can be extended to a join on a common projection. If
two graphs u and w have a common projection u, then
the projective origins of u in u and in w are subgraphs of
u and w that are isomorphic. Therefore, u and w can be
overlaid with the two projective origins matched up ex-
actly. Each concept in the two subgraphs can then be
restricted to the common subsort in their common
projection u.

Theorem If u is a common projection of u and W , then u
and w may be joined on the common projection u to
form a well-formed conceptual graph by the following
steps:

1 . Let u' be a projective origin of u in u, and let w' be a

2. Restrict each concept of U' and w' to the sort label of

3. Detach all conceptual relations of u' .
4. Join each concept of u' to the corresponding concept

projective origin of u in w.

the corresponding concept of u.

of w'.

The concepts and conceptual relations in the resulting
graph are the union of all those in u, those in u - u' , and
those in w - w'.

Proof To prove that the resulting conceptual graph is
well-formed, it is necessary to show that the same graph
could be obtained from u and w by applying only the
basic formation rules. First, the acts of restricting con-
cepts in u' and w' to their corresponding concepts in u
are legal because each concept in a projection is a sub-
sort of the corresponding concept in any of its projective
origins. Second, the act of detaching all the conceptual
relations of u' at once produces the same collection of
well-formed graphs obtained by detaching them one at a 341

CONCEPTUAL GRAPHS JULY 1976

HIRE EMPLOYEE

Figure 12 A maximal common projection of graphs in Fig. 5 .

pr"yGy7 PERSON

Figure 13 A maximal join with a different kernel.

time. Finally, the acts of joining the concepts from u'
and w' are legal because they have been restricted to
identical subsorts. The derivation is therfore equivalent
to a sequence of detachments, restrictions, and simple
joins.

The first set of restrictions had the effect of replacing u'
and w' with copies of u. Since no detachments were per-
formed on any conceptual relations of w, the resulting
graph before the joins must have been the union of u
with MJ - w'. Since the original graph u was connected,
every concept and conceptual relation of u - u' must have
been connected to some concept of u' by conceptual re-
lations not in u'. Therefore, the final series of joins
would result in combining the concepts and conceptual
relations of u - u' with those of the union of u with w - w'.

When two graphs are drawn on transparent sheets, a
join on a common projection could be illustrated by
covering part of one graph with part of the other graph.
Overlapping conceptual relations have to match exactly,
but overlapping concepts are restricted to common sub-
sorts.

Dejinition If u and w are joined on a common projection
u, then all concepts and conceptual relations in the
projective origin of u in u and the projective origin of u
in w are said to be covered by the join. In particular, if
the projective origin of u in u includes all of u, then the
entire graph u is said to be covered by the join.

The notion of covering is important for answering a
data base query. The user's original question is trans-
lated into a query graph, and the system generates an
answer graph whose join with the query graph covers it
completely. The next three definitions introduce maxi-
mal joins, which are used in deriving the answer graph.

sponds to a in a projective origin of u in u, and the con-
cept c that corresponds to a in a projective origin of u
in w.

A kernel of a common projection is important because
a basic algorithm for computing common projections is
to start with a kernel and then build it up into larger
graphs by adding other concepts and conceptual rela-
tions.

Dejinition Let u be a common projection of u and w with
a kernel k = (u , 6, c) . Then u is called a maximal com-
mon projection with respect to the kernel k if there is no
graph t with the following properties: t is a common
projection of u and w with the same kernel k, u is a
projection of t , and u is not identical to t .

Dejinition Let u be a maximal common projection of u
and w with respect to the kernel k = (a , 6, c) . Then a
maximul join of u and w with respect to k is a graph ob-
tained by joining u and w on the common projection u
under the condition that the concept b in u is joined to
the concept c in w.

Figure 12 is a maximal common projection of the
graphs in Fig. 5 with respect to a kernel consisting of
the three concepts labeled HIRE: one in each of the
graphs of Fig. 5 and the one in Fig. 12. By a maximal
join on this graph, Fig. 9 could be derived from Fig. 5 in
one step.

A single concept MANAGER would also form a
maximal common projection of the same two graphs,
with the kernel containing the concept labeled MAN-
AGER in the first graph of Fig. 5 and EMPLOYEE in
the second graph. Figure 13 shows the corresponding
maximal join; this join cannot be extended as far as the
two concepts HIRE because the conceptual relations
AGNT and PTNT are different. The derived graph
may be read as "A manager who hired a person was
hired at a certain date." As this example shows, two
graphs may have several different maximal joins.

Values and quantifiers
The concepts described so far are generic concepts that
may represent anything of a given sort. To describe ac-
tual information about particular entities or events in the
data base, concepts must be associated with particular
instances. A concept behaves like a variable in the pred-
icate calculus: the sort label is analogous to a subscript
in sorted logic or a data type in a programming language;
it determines the kind of entities, events, or properties
that the concept may represent. The concept NUMBER,
for example, may represent any number; to specify a par-

Dejinition If u is a common projection of u and w, then a ticular number, it must be assigned a value. Figure 14
kernel of the common projection consists of three con- shows concepts with values specified by placing either a

342 cepts: any concept a in u, the concept b that corre- literal or a proper name after the sort label.

JOHN F. SOWA IBM J. RES, DEVELOP,

A concept may be indefinite, constant, or quantified.
An indefinite concept has just a sort label inside the box,
a constant concept has a specified value, and a quanti-
fied concept has a logical quantifier. Since values and
quantifiers are mutually exclusive, they are both written
in the same position in the box. The symbol V represents
a universal quantifier and 3 an existential quantifier.

Besides representing quantifiers, conceptual graphs
must indicate their scope. For each existential quantifier
that depends on one or more universal quantifiers, dot-
ted lines may be drawn from the universal quantifiers to
the existential. Figure 15, for example, represents the
proposition

(VX) (~ y) (32) (z = difference (x, y) 1.

Note that the variable names x, y , and z have disap-
peared from Fig. 15. The purpose of named variables in
logic is to indicate repeated uses of the same variable by
repeated occurrences of its name. In conceptual graphs,
however, a variable appears as a box, and all uses of
that variable are linked to the same box. By eliminating
named variables, the graphs eliminate accidental varia-
tions caused by different choices of names and avoid the
need to rename variables in substitutions.

Dotted lines showing the scope of quantifiers can
express finer distinctions than the standard predicate
calculus. For example, consider a predicate P (x , y, z, w)
with x and y universally quantified, z existentially quanti-
fied depending only on x, and w existentially quantified
depending only on y. Both of the following formulas in
standard logic introduce irrelevant dependencies of u’ on
x o r z o n y :

The dotted lines overlaid on a conceptual graph repre-
sent only those dependencies that are logically neces-
sary [151.

The ordinary existential quantifier 3 states that there
exists one or more entities that meet the given condi-
tions. For the graph in Fig. 15, the result of the function
is unique; therefore, the unique existential quantifier E’
may be used to state that there exists exactly one value
of z for each pair of x and y . In general, a function of n
arguments is determined whenever the unique existential
E’ depends on n universal quantifiers. Since the dotted
lines then define a function, they are called functional
dependencies [161. The basic conceptual graph repre-
sents the domain roles, and the functional dependencies
are a separate graph structure overlaid on top of the
original graph; the two structures represent complemen-
tary information, and each is necessary for a full descrip-
tion of the data base relations.

pG&Gq F I V
Figure 14 Concepts with specified values.

NUMBER:3 -__ --.
/’ \

\

//’ ‘\
\

//
\

/
\
\
\

Figure 15 Quantified concepts with lines indicating scope.

Dejinition A functional dependency in a conceptual
graph is a set of function links from one or more con-
cepts called sources to a concept called the target of the
functional dependency. Associated with each functional
dependency is an access procedure. Whenever all the
sources of a functional dependency have values, the
access procedure can compute a value for the target.

In the ordinary predicate calculus, functional depen-
dencies are seldom stated explicitly. In a system for ac-
cessing data bases and other computational facilities, a
statement that one variable depends on another is not as
useful as an access procedure that can compute the
dependency upon request. The technique of combining a
logical notation with procedures that evaluate functions
has great generality: Woods [17] developed such a tech-
nique for his question answering system, Winograd
[181 suggested a method that he called procedural at-
tachment in his discussion of frame systems, and Weyh-
rauch and Thomas [191 used a similar method of seman-
tic attachment in their proof checking system.

Plural nouns normally have sets of entities as their
values. For the question “What employees were hired
by Jones?” the expected answer would be a set. To
answer such questions, concepts may have sets as val-
ues, and a new symbol, E-set, is introduced to represent
“There exists a set of sort. . . .” This quantifier is
weaker than the ordinary existential because it allows
empty sets as values of the concept. Since E’ defines an
ordinary function, it can support functional composi-
tions; E-set, however, cannot support the same composi-
tions because it would create fallacies such as the
connection trap [201.

Another refinement that increases the expressive
power of the notation is the possibility of introducing
compound sort labels, which are themselves conceptual
graphs, For the nonrestrictive phrase “All elephants,
which have trunks,” the quantifier “all” applies only to 343

CONCEPTUAL GRAPHS JULY 1976

To data base k""" + MANAGER:El

I
t

HIRE

\ I
X"""""""""

To data base

Figure 16 Conceptual schema for the HIRE relation.

the sort ELEPHANT; but in the restrictive phrase "All
elephants that perform in circuses" the quantifier applies
to the sort ELEPHANT-THAT-PERFORM-IN-CIR-
CUS. Although a sorted logic could use roundabout
paraphrases to avoid adding new sort lables, Altham and
Tennant [2 1] developed a notation for sort expressions
that reflects the structure of the original English sen-
tence. For this example, the compound sort expression
would itself include an existential quantifier on CIR-
CUS.

Altham and Tennant's approach could be adapted to
conceptual graphs by making the set of sort labels open-
ended and accepting graphs that meet certain conditions
as new labels. Formalizing that approach, however,
would require considerable discussion that is beyond the
scope of this paper. Values and quantifiers on concepts
are defined formally by introducing two selector func-
tions, value and quant, which apply to a concept and re-
turn whatever value or quantifier is written inside the
box.

Assumption The two functions value and quant may be
applied to any concept e. If both ualue(c) and quant(c)
are undefined, then c is indefinite. If ualue(c) is defined,
then c is constant. If quant(c) is defined, then c is
quantified. These two functions obey the following rules:

No concept is both constant and quantified: for all e ,
either uafue(c) or quant(c) is undefined.

Whenever quant (c) is defined, its value is one of the
four symbols {V, 3, E', E-set}.

There is a function permissible, which defines a set of
permissible values for a concept with a given sort la-
bel: if c is any constant concept, then uulue(c) must
be in the set permissible (sort (c)) .
If s and t are sort labels for which s 5 t , then permissi-
b l e (~) is a subset of permissible(t).

Note that the formal definitions are independent of the
344 box and circle notation. By using the selector functions

sort, uulue, and quant, definitions and theorems can re-
fer to the components of a concept without mentioning
the way they happen to be drawn on paper or represent-
ed in computer storage. Although diagrams are impor-
tant for helping people to visualize conceptual graphs,
the formalism should not depend on some artist's draft-
ing techniques.

Conceptual schema
A conceptual schema is a conceptual graph that has cer-
tain combinations of quantifiers and functional depen-
dencies. It is a mediator between the conceptual graphs
and the other facilities in the computer system: its un-
derlying structure is a conceptual graph, but its func-
tional dependencies form a superimposed structure that
provides a direct mapping to the data base. To answer a
user's question, the system would find or construct a
schema having functional dependencies that would com-
pute the desired answer. The computed values may be
simple scalars if the target of a functional dependency
is quantified with E', or they may be sets if it is quanti-
fied with E-set. The ordinary existential quantifier 3 is
not used in a schema because it does not define a unique
function.

Dejinition A conceptual schema is a well-formed con-
ceptual graph having one or more functional dependen-
cies. If the concept c is a source of one or more func-
tional dependencies, but not a target of any dependency,
then quant(c) = V. If c is a target of one functional de-
pendency and a source of one or more functional depen-
dencies, then quant(c) = E'. If c is a target but not a
source, then quant(c) is either E' or E-set. No concept
may be the target of two or more functional dependencies.
All other concepts in the schema are indefinite and are
called selectors.

For a relational data base, the relations are described
by conceptual schemata. If a relation is in Codd's third
normal form [221, it has a key consisting of one or more
domains, all other domains are functionally dependent
upon the key, and there are no transitive dependencies.
For such a relation, the conceptual schema would have a
quantified concept for each domain as well as selector
concepts and conceptual relations that describe the
domain roles. In the relation HIRE, for example, the
key domain EMPLOYEE is universally quantified, the
concepts for the nonkey domains MANAGER and
DATE have the quantifier E', and the selector concept
HIRE is indefinite (Fig. 16). Attached to the two func-
tional dependencies are the access paths for some data
base relation.

Many relations and functions have more than one set
of key domains. For such relations, the system needs a
separate schema for every possible set of keys. Differ-

JOHN F. SOWA 1BM J . RES. DEVELOP.

ence is a function with three possible keys: in normal
use, the two arguments are keys that determine the re-
sult, but with either argument and the result, the other
argument is determined. In order to compute any of the
three values, given the other two, the system would need
three schemata: besides Fig. 15, it would eed a schema
that showed argument 1 functionally dependent on result
and argument 2 , and another schema that showed argu-
ment 2 functionally dependent on result and argument 1 .
The system would select the appropriate schema for a
given problem, depending on which values were speci-
fied and which were to be determined. Since the algo-
rithms for a function and its inverse are usually quite
different, each of the three schemata would have to
specify a different procedure.

The conceptual schema for difference illustrates the
use of schemata for representing functions that access a
procedure instead of a stored file. The greater-than rela-
tion, for example, has infinitely many entries, but it
could be evaluated by a simple procedure; its conceptual
schema would look like a data base schema, but its func-
tion links would be attached to a procedure [23]. As
this example illustrates, a conceptual schema can pre-
sent the same interface to the user for either a computed
or a stored relation.

For some data base relations, all domains are part of
the key. The STOCK relation, for example, is a many-
to-many relation between parts and the supplier who
stock them; each supplier may stock multiple parts, and
each part may be in the stock of multiple suppliers. This
relation has two domains, both domains are part of the
key, and there are no other domains functionally depen-
dent on the key. To place universal quantifiers on both
domains in the schema would be inaccurate because it
would imply that all suppliers stock all parts. Instead,
two schemata, as in Fig. 17, are needed: one says that
for each supplier there exists a set of parts, and the other
says that for each part there exists a set of suppliers.

The quantifier E-set includes the possibility that the
set may be empty. Some suppliers, for example, may not
stock any parts at the present time. Whenever a domain
Y is functionally dependent on domain X , e.g$ X + Y ,
the inverse function f" determines a set of values in
X (possibly empty) for each value in Y . For the HIRE
relation, DATE is functionally dependent on EM-
PLOYEE; therefore, for all dates, there exists a possi-
bly empty set of employees hired on that date. Since
this fact is implied by the schema in Fig. 16, the system
could either have a separate schema for the inverse, or it
could have a mechanism for deriving an inverse schema
when necessary.

Any relation over n domains can be characterized by
a conceptual schema having n - 1 source concepts and a
target concept quantified with E-set. This is the weakest

P

JULY 1976

/'
""""""""""""""~

I

Figure 17 Conceptual schemata for the STOCK relation.

possible assumption and also the least interesting. In
most practical applications, a relation has a key of less
than n domains and the nonkey domains have unique
values for each combination of values for the key do-
mains. When a target concept has the unique existential
E', targets and sources may be joined to form intricate
paths of functional dependencies to answer complex
questions. The selector concepts in a schema are like the
knobs and indentations on the pieces of a jigsaw puzzle:
they determine the ways in which a schema may be joined
to other schemata. In the extreme case, the analogy
with a jigsaw puzzle is complete; the schemata fit togeth-
er in only one way to answer a fixed number of possible
questions. In the general case, there is an endless variety
of combinations; the selectors match concepts in the
user's question to determine the selection of schemata
required to answer it.

In the SPARc/DBMS approach [24], the term con-
ceptual schema refers to a complete description of all
the logical relations in the entire data base; it is a de-
scription of the user's view at a conceptual level rather
than a description of the system's view of the data
as stored. Since a conceptual schema as defined in
this paper describes only a part of the data base, it
would correspond to a conceptual subschema in the
SPARc/DBMS terms. Except for this difference in ter-
minology, the sPARc/ DBMS approach is compatible
with the theory developed in this paper. In fact, the for-
malism for conceptual graphs and schemata may be
considered as a proposed description language for
sPARc/DBMs, which as yet has not developed a formal
notation.

As in the sPARc/DBMs approach, the first step in
defining a data base is to develop a formalized model of
an enterprise, with a list of all the entities and relation-
ships to be represented. For each relation to be stored in
the data base, the data base designer would define one or
more conceptual schemata to represent the roles of the
entities and the functional dependencies between them.
He would then map the access procedures to internal
paths in the data base, and he would specify a domain in
some relation for each quantified concept. If a schema 345

CONCEPTUAL GRAPHS

had n quantified concepts, the mapping would specify n
different domains in the data base, possibly in different
relations. The formation rules for conceptual graphs
could then be used to form the schemata of derived rela-
tions: an equal-join of two data base relations would
correspond to a join of their schemata, and a projection
of a relation would correspond to a projection of its
schema.

Boolean connectives
The world. according to Wittgenstein, is all that is the
case [2 5] . For a particular aspect of the world, a data
base is all that is known to be the case. Wittgenstein’s
view of the world as a “totality of facts,” an enormous
conjunction of elementary propositions, is a position that
he modified in his later philosophy, but his early position
is an apt characterization of a data base: a data base is a
large conjunction of propositions, all asserted to be true.

The main advantage of relational data bases is that the
propositions are stored in a simple logical form. The
data base is organized as a conjunction of relations, each
represented by a list of n-tuples for which it is known to
be true; the structure is further simplified by storing the
relations in third normal form. Furthermore, the proposi-
tions in a data base are positive; data bases seldom if
ever contain negated predicates and relations. Other
Boolean connectives, such as disjunctions, are also ab-
sent in the data as stored, although they may be used in
a data base query. Conditionals are never present in
stored data and are rarely used in queries, but they are
common in stating constraints.

These observations imply that the Boolean connec-
tives have clearly distinct uses in a data base system.
Reaction-time experiments show that people also find
some connectives more difficult to process than others:
disjunctions normally take more time than conjunctions;
negative statements take longer to interpret than positive
statements if they are presented in isolation, but they are
just as easy to process as positive statements if they are
negating a presupposition that underlies the current dis-
cussion [2 6] . The apparent symmetry in the standard
notation for symbolic logic is misleading because it sug-
gests that conceptual graphs should represent them all in
a parallel form. In fact, conjunction is the only one that
is easy to represent- simply by joining graphs. To repre-
sent all Boolean connectives in a conceptual graph, there
are two basic approaches, which may be called abstract
and direct.

The abstract approach treats Boolean connectives as
functions of truth values, as in symbolic logic. It intro-
duces two new sort labels, SITUATION and TRUTH-
VALUE, and a conceptual relation MODE. A concept
labeled SITUATION may have conceptual graphs as

346 values, and one labeled TRUTH-VALUE may have

values true, false, possible, unlikely, etc. MODE is a
dyadic relation that links SITUATION, whose value is
a conceptual graph, to TRUTH-VALUE, whose value
states whether the graph is true or false. Then all Boo-
lean connectives are represented as concepts of func-
tions that take truth values as arguments and produce
truth values as results; for any formula in the proposi-
tional calculus, each Boolean connective would corre-
spond to a concept of a Boolean function, and each pro-
positional symbol would correspond to a concept with
sort label SITUATION. With this construction, formu-
las in symbolic logic can be mapped directly into con-
ceptual graphs. This approach shows that conceptual
graphs are at least as general as standard logic, but it
does not take advantage of the special properties of the
graphs.

The direct approach is based on the hypothesis that
conceptual graphs are isomorphic to the mental struc-
tures underlying human thinking; it uses psychological
and linguistic evidence to formulate the rules and com-
puter simulations to test their efficiency. This approach,
which is discussed in a forthcoming book [2 7] , assumes
that the Boolean connectives may be represented stati-
cally, as in the abstract approach, but that their primary
role is to indicate operations for combining conceptual
graphs; the system has a current working graph, and the
Boolean connectives specify operations on that graph:

Conjunction Join a new graph to the working graph.

Negation Detach the negated subgraph from the
working graph; an isolated negation would have noth-
ing to detach and would require the creation of an arti-
ficial working graph.

Disjunction Create an extra copy of the current work-
ing graph, and join each alternative to one of the
copies.

Implication If some subgraph of the working graph is
a projection of the antecedent, then join the conse-
quent to the working graph.

Since the topic of this paper is not psychology, but data
bases, further elaboration and justification for these rules
is left to the forthcoming book. Two observations, how-
ever, are worth making: first, the procedural aspect of
these rules may make them useful in a computer simula-
tion; and second, they are compatible with the abstract
approach, since the working graph could be made up of
concepts of situations, truth values, and Boolean
connectives. People could therefore learn to do symbolic
logic, but they would have to perform multiple “direct”
steps for each “abstract” operation.

For answering data base queries, the system could use
both direct operations for combining graphs and abstract

JOHN F. SOWA JULY 1976

representations for Boolean connectives. If the user’s
query contained Boolean connectives, they would initial-
ly be translated into the abstract style. But to determine
what data base relations should be accessed, the system
would rely upon operations for directly combining con-
ceptual schemata. Since the abstract approach does not
illustrate the novel features of conceptual graphs, the
remainder of this paper concentrates on techniques us-
ing direct operations.

Answering a query
Since the logical structure of a data base has such a sim-
ple form, a special algorithm for answering data base
queries can be more efficient than a general procedure
for proving theorems. Whereas a theorem prover de-
duces a general theorem, a data base system starts with
facts about particular entities and determines which enti-
ties satisfy a given relation. A typical query may have
the logical form,

Find all pairs (x, y) , for which R (x , y , a , b, c) is true.

In this example, R is a relation, x and y are variables
whose values are to be determined, and a, b, and c are
constants specified in the query. If R happens to be one
of the basic relations around which the data base is orga-
nized, the logical problem of answering this query is triv-
ial, although the programming effort may be significant
for nonrelational data bases. A major difficulty for data
base query systems occurs when R is not one of the
basic relations but must be determined by some combi-
nation of relations.

Most query languages avoid the difficulty by requiring
the user to learn the files or relations in the data base
and then to state his query in terms of them. Even the
sophisticated systems based on relational data bases,
such as SEQUEL, SQUARE, or Query-by-Example, require
the user to name each relation explicitly. If the query
requires data from two or more relations, the sequence
of operations for combining them can quickly exceed the
abilities of a nonprogrammer. Menus and on-line help
facilities can remind the user of the available relations
and give him a refresher course on how to combine
them. Help facilities, however, do not make the learning
problem go away; they just provide a piecemeal tutorial
instead of a complete user’s guide.

For systems with a natural language interface, the in-
ference problem cannot be avoided. The following state-
ment, for example, is not natural English:

In relation HIRE, find EMPLOYEE where MAN-
AGER is Jones.

People never talk like that to other people. They would
say, “Who did Jones hire?” and expect the listener to

infer what relations and domains are involved. Many
natural language systems can answer this type of ques-
tion because the required domains are in a single data
base relation; the REQUEST system described by Plath
[28] and Petrick [29] supports a natural syntax for such
questions. Queries that apply a function to the data are
also easy to handle if the user’s question specifies the
function by an appropriate keyword, such as “average”
or “total.” Queries that combine data from two or more
relations can be handled if the system designer antici-
pates the form of the question by providing a macro or
procedure for answering it. But conceptual graphs are
designed for the more general problem of having the sys-
tem determine for itself what relations and domains are
necessary to answer a given question.

If the user’s question is incomplete or ambiguous, the
system may prompt him for further information; and it
may refuse to accept words or constructions that it
doesn’t understand. But in no case should the system
require the user to specify the stored relations and ac-
cess paths in the data base. Determining the required
relations is not a problem of syntax, but semantics. The
REQUEST system, for example, has a sophisticated syn-
tax that can translate a usable subset of English into a
formal notation, such as a conceptual graph or a rela-
tional query language. Heidorn’s natural language pro-
cessor [30] would also be adequate; his internal prob-
lem descriptions are similar in structure to conceptual
graphs, and his prompting technique could support a dia-
logue for handling complex queries. The inference prob-
lem arises after the natural language statement has been
translated into a formal notation: merely converting the
syntax cannot add information; if the user did not speci-
fy the relations, the translated form will not specify them
either.

For the TORUS system [21, the designer must solve
the inference problem in advance by creating a prede-
fined network of concepts with all possible combinations
that anyone might ever ask about. When the user types
in a question, the system translates it into a query graph
and attempts to match it to some part of the predefined
network. Associated with various parts of the network
are links to appropriate data base relations. Which rela-
tions are required to answer a given question is deter-
mined by the parts of the network that match the query
graph.

For a data base with a small number of domains that
can only be related in a fixed number of combinations,
the predefined network is adequate. But in the general
case, the number of combinations may be infinite; some-
one might ask the question “Who was the person who
hired the person who hired Jones?” where a single rela-
tion may be iterated arbitrarily many times. If the sys-
tem can join conceptual schemata as needed, it can gen- 347

IBM J. RES. DEVELOP CONCEPTUAL GRAPHS

Figure 18 A sample query graph.

erate only those combinations required for the question
at hand; otherwise, it would have to store an enormous
number of combinations, most of which would never be
used. Another weakness of the giant network is the lack
of modularity: if the data base designer wanted to add,
delete, or redefine a data base relation, he would have to
change every part of the network from which that rela-
tion could be accessed; in an incremental approach,
however, he might only have to change one schema that
was mapped to that relation. A third weakness of the
predefined network is that it places the burden on the
data base designer to foresee all possible combinations
at the time he is defining the network; an incremental
approach would allow him to enter simple schemata and
let the system form the combinations. Questions of rela-
tive efficiency depend on the implementation: whether it
is faster to search through a large graph or to copy and
join small graphs; whether a single large graph requires
more 1 / 0 transfers than several small graphs; and
whether search techniques can more easily find a path
through a large graph or find multiple small graphs.

With conceptual graphs, either the single network or
the collection of schemata could be used. The recom-
mended approach, however, is to join schemata as
needed to answer a given query. For efficiency, some
combinations that are frequently used together could be
included in a single schema. The value of the concept
AGE, for example, may be computed by finding a date
of birth in the data base and calling a procedure that sub-
tracts two dates; therefore, the schema that defines
AGE could include access links for both the data base
relation and the procedure. Efficiency, of course, is
meaningless unless the system can answer the original
question and guarantee that the answer is correct; it
must start with the query graph and determine which
schemata to join and which data base accesses to make
in order to compute the answer.

When the user types in a question, the input analyzer
should translate it into a well-formed conceptual graph q
(the systems described by Heidorn or Petrick could be
adapted to do the translation). Every concept in the
graph q whose value is to be determined would be
flagged with a question mark. To determine values for
the flagged concepts, the system should generate an
answer graph w that meets the following criteria:

1. w is a well-formed conceptual graph.
348 2. w is true if the data base is correct.

JOHN F. SOWA

3. The entire query graph q is covered by a join with the

4. For every concept in q that has a value, the corre-

5. For every concept in q that had a question mark, the

answer graph w .

sponding concept in w has the same value.

corresponding concept in w has a value.

Point 1 would be satisfied if the system generates w by
using the basic formation rules or the derived rules such
as projection and maximal join. Point 2 guarantees that
the system is sound; i.e., it will not generate incorrect
answers. Point 3 implies that w includes all of the do-
main roles and relationships of the query graph, although
some of the concepts may be further restricted; for ex-
ample, PERSON in the query graph may be restricted to
EMPLOYEE or MANAGER as a result of joins with
various conceptual schemata. Point 4 insures that the
answer is talking about the same entities that the user
asked about. And point 5 states that w must include an
answer to the question. If the original question was in-
complete or ambiguous, then it would not have a unique
answer. In that case, the system should prompt the user
for further information; it should not require him to re-
state the entire question, but only to add values or condi-
tions that are necessary to complete it.

Algorithms for generating an answer graph
Before considering a general algorithm, we should look
at a special case where the answer graph is easy to find.
Suppose someone asked the question “Who hired Lee?”.
The query graph for this example is Fig. 18.

The conceptual schema in Fig. 16 almost meets the
criteria for an answer graph: a maximal join with the
schema for HIRE would cover the entire query graph.
The schema does not satisfy criterion 4 or 5 , however,
because it does not have values for the concepts in the
query graph having a value or a “?”. To determine val-
ues, Fig. 18 may be joined with Fig. 16 to produce Fig.
19. The question mark from the query graph is carried
over, and the value “Lee” replaces the universal quanti-
fier. (I t the standard predicate calculus, a universally
quantified variable may always be replaced by a con-
stant; but in a sorted logic, the replacement is permissi-
ble only if the sorts match. The corresponding rule for
conceptual graphs implies that the system must check
whether Lee is an employee before restricting PER-
S0N:Lee to EMPL0YEE:Lee in order to perform the
join.)

When the target of a function is flagged with a ques-
tion mark and all of its sources have values, then a value
for the target can be computed by the access procedure.
Since the concept MANAGER:E’? is functionally de-
pendent on EMPLOYEE:Lee, the value for MAN-
AGER can be obtained from the data base. Then the

I B M J . RES. DEVELOP.

manager’s name would be substituted for the quantifier,
and the resulting graph would satisfy all the criteria for
an answer. In a more complex case, the target of a func-
tional dependency may be flagged with a question mark,
but one or more sources may not yet have values; in that
case, question marks could be propagated backwards
along the function links to flag the source concepts
whose values are requested. If the question marks even-
tually stop on concepts with values, then the access pro-
cedures can be called and the results returned to the
original question mark, which came from the user’s
query.

The critical problem arises when a question mark
stops on a concept that has neither a value nor a func-
tion link leading to it; then there is no procedure to exe-
cute or place to propagate another question mark. Such
a state is similar to an original query graph. Figure 18,
for example, had a question mark on a concept but no
function links. For Fig. 18, the answer was obtained by
joining the query graph to a conceptual schema so that
the question mark was joined to a target concept. This
technique could be generalized to form algorithm A:

Start with the concepts on the query graph that are
flagged with question marks; join conceptual schemata
to the graph so that the Ragged concepts are covered
by target concepts; propagate the question marks
backwards along the function links; evaluate any func-
tional dependencies whose sources all have values;
and repeat until the original question is answered.

This algorithm sounds plausible, but will it always termi-
nate with a result, and will the result be the correct an-
swer to the original question?

Unfortunately, algorithm A may not always terminate,
and it can generate incorrect results. If the original ques-
tion was incomplete, the algorithm makes no provision
for generating prompts: instead, it keeps joining sche-
mata and propagating question marks without ever having
enough values to answer them. Although every function
may generate correct results, there could be multiple
paths of function links in the data base, and the algo-
rithm might stumble upon a path that answered a ques-
tion different from the one the user asked; the user may
have asked for the quantity of widgets on hand, and the
algorithm could generate the quantity ordered.

To keep the system from looping endlessly on unsolv-
able problems, algorithm B imposes another condition
on algorithm A: every join of a new schema to the de-
veloping answer graph must cover at least one concept
of the original query graph. This restriction keeps the
graphs from growing too large, with branches far remote
from the concepts of the original query. By avoiding
remote joins, algorithm B may be unable to answer some
complex queries automatically, but it could still answer

t
HIRE DATE:E’

?

Figure 19 First step towards the answer graph.

a potentially infinite number of questions. For example,
“Who was the person who hired the person who hired
the person who hired Jones?” could be answered be-
cause every schema joined would cover part of the origi-
nal query graph. If the system runs out of schemata to
join to the graph and it still has unanswered question
marks, it could use the concepts left with question marks
as the starting points for prompting the user for further
information. By asking for help when it runs into a dead
end, the system could extend the query graph and even-
tually generate any answer derivable from the data base.

The additional restriction for algorithm B keeps it
from looping, but it does not guarantee correct answers.
The next three definitions characterize the permissible
conditions for joining schemata, the schematic universe
that includes all possible schemata that may be derived
by repeated joins, and the set of all correct answer
graphs. Every answer graph may be generated by deter-
mining values for the quantified concepts of some sche-
ma in the schematic universe. For the TORUS system, the
analog of the schematic universe is its single large con-
ceptual network. For this theory, however, the schemat-
ic universe would never be generated in its entirety; in-
stead, schemata would be joined as needed to answer a
given query.

DeJinition A schematic jo in is a join either of two con-
ceptual graphs or of one conceptual graph with itself
under the following conditions:

The join must be maximal.

The result inherits all function links; the sources and
target of each functional dependency in the resulting
graph are the concepts covered by the source and tar-
get concepts in the original graph.

When an indefinite concept is joined to a quantified
concept, the resulting concept has the same quantifier.

When the quantifier E’ is joined to the quantifier V,
the result has quantifier E’.

When the quantifier V is joined to the quantifier V, the
result has quantifier V. 349

CONCEPTUAL GRAPHS JULY 1976

All other joins of quantifiers (E' to E', E' to E-set, E-
set to E-set, and E-set to V) are prohibited; if this re-
striction prevents a join from being maximal, then the
prospective schematic join is rejected.

Theorem The graph that results from a schematic join of
one or two conceptual schemata is also a conceptual
schema.

Proof This result follows from the observation that the
properties defined for a conceptual schema are pre-
served by the conditions for a schematic join.

One reason for requiring the joins to be maximal is to
force the paths of selector concepts to coalesce when-
ever possible; otherwise, redundant or spurious paths
could be generated that the data base designer had not
intended. Since universal quantifiers are the sources of
function links, the effect of joining two universals is to
specify the same argument for two different functions or
for two arguments of the same function. Joining E' to V
specifies the result of one function as an input argument
of another. Joining two existential quantifiers is prohib-
ited because two different functional dependencies
would then have the same target concept, which might
be assigned two inconsistent values. The requirement
for maximal joins together with the prohibition against
joining two existential quantifiers prevents the same
schema from being joined more than once in exactly the
same position; this restriction prevents the system from
getting into a loop when it is generating an answer graph.
The rule against joining E-set with a universal quantifier
prohibits sets as inputs to functions; further extensions

with the source concept of another copy of the same
schema would produce the schema for f (f (x)) . The
join of the target o f f with the source concept of the
same copy would produce the schema for x = f (x) . A
join of the two source concepts for g would produce the
schema for I: (x , x) . And a join of a schema for f with a
schema for g in all possible combinations would produce
schemata for x (f (x) , Y), g (x , f (y)) , and f (g (x , Y))
when the target of one functional dependency is joined
to a source of another; but it would also produce the com-
binations { f (x) , g(x, y) } and {g(x, y) , f (y) } when the
sources are joined. Note that joining two copies of the
schema for f could not produce { f (x) , f (x) } because a
maximal join would cause the two identical function con-
cepts as well as the two target concepts to be overlaid on
top of each other; the prohibition against joining two ex-
istentials would then cause the join to be rejected.

When all universally quantified concepts in a schema
are assigned values from the data base, then the access
procedures can compute values for the other quantified
concepts. By systematically generating values for all
schemata in the schematic universe, the set of all possi-
ble answer graphs may be enumerated. If a closed cycle
of function links has been created by some schematic
join, then the resulting schema can never obtain values
for targets in the cycle and cannot lead to an answer
graph. A conflict may arise when a target concept has
been restricted for some join; then a value computed for
the target may not belong to the subsort to which the
concept has been restricted; any graph with such a con-
flict is rejected [3 11.

to the theory could allow sets as inputs, but these will
not be considered in this paper.

Dejinition The schemutic universe determined by a set S
of conceptual schemata is the set of all schemata ob-
tained by the following operations:

All schemata in S are in the schematic universe.

For each schema s in the schematic universe, if a
schematic join of s with itself is possible, then the
schema that results from that join is in the schematic
universe.

For each pair of schemata (s, t) in the schematic uni-
verse, if a schematic join of s and t is possible, then
the schema that results from that join is in the sche-
matic universe.

Since the schemata in S define functions, the schemat-
ic universe represents all possible functions that may be
derived by composition of the functions in S . As exam-
ples, let f (x) and g (x , y) be functions defined by sche-
mata (cf. Fig. 15 for a diagram of such a schema). Then

350 a schematic join of the target concept of the schema forf

Definition An answer graph is a conceptual graph ob-
tained by assigning values to the quantified concepts of
some schema s according to the following rules:

For each concept c in s where quant (c) = V, assign a
value in the set permissible (sort (c)) .

When all source concepts of a functional dependency
have values and the target does not have a value, then
use the access procedure to compute a value for the
target. Repeat as long as there is a dependency whose
sources have values and target does not.

If some target concept remains without a value, then
reject the graph.

If some target concept c has been assigned a value
that is not in the set permissible (sort (c)) , then reject
the graph.

Otherwise, accept the graph as an answer graph.

The answer graphs are all well-formed conceptual
graphs because they are simply schemata with values
assigned. The question of whether the answer graphs are

JOHN F. SOWA IBM J. RES. DEVELOP.

all true depends on the adequacy of the original set of
conceptual schemata. Each answer graph is a statement
of some relationships between entities recorded in the
data base; if the stored data were correct and if each of
the original schemata correctly stated functional depen-
dencies, then their joins would also state a correct func-
tional dependency. Possible errors could arise because
some combination of schemata might cause the selector
concepts (the indefinite concepts such as HIRE in Fig.
16) to form unexpected paths that are not true. The
selector concepts are necessary to distinguish different
domain roles and to select the correct schemata for an-
swering a given query. In order to avoid undesired com-
binations, however, the number of selectors should be
kept to the minimum necessary to distinguish the do-
main roles. An important topic for further study is a set
of guidelines to help data base designers define schemata
that avoid such combinations.

If the data base has a set of conceptual schemata that
rule out incorrect combinations, then the system can
answer a user's question simply by picking the correct
answer graph. Unfortunately, there are too many possi-
ble answer graphs to let the system generate them one at
a time and check them against the query graph. There-
fore, the system must be more selective and join only
those schemata that have a good chance of leading to a
satisfactory answer graph. The next four definitions de-
scribe an algorithm that avoids incorrect combinations
and uses a set of preference rules as a heuristic guide for
speeding up the search.

Dejinition A query graph is a well-formed conceptual
graph with the following properties: it contains no quan-
tifier or function link, one or more of its concepts have
values, one or more concepts have a question mark, and
no concept has both a value and a question mark.

The query graph is generated by the input analyzer
from the user's original question. The input analyzer
must have a starting set of well-formed conceptual
graphs that are compatible with the data base schemata:
every starting graph used by the input analyzer must be
coverable by a join with some schema in the schematic
universe. This is a necessary condition for deriving an-
swerable query graphs. It is not a sufficient condition
because the user can always ask a question with incom-
plete information; but, in that case, the system should
prompt him for the missing information.

Dejinition For a set of conceptual schemata S and a
query graph q, a working graph for q is any conceptual
graph that may be obtained by the following operations:

The query graph q is a working graph for q.

If w is a working graph for q, ant d s is a schema in S ,
then the result of a schematic join either of w with it-
self or of w with s is also a working graph for q, pro-
vided that no concept that has a value is joined to a
concept with a quantifier E' or E-set, no concept that
has a value is restricted to a subsort for which the val-
ue is not permitted, and all values and question marks
in w are copied over to the corresponding concepts of
the resulting graph (some universal quantifiers may
therefore be replaced with values).

If w is a working graph for q and the target of some
functional dependency f in w has a question mark,
then the graph obtained by adding question marks to
every source off that does not have a value is also a
working graph for q.

If w is a working graph for q, all sources of some func-
tional dependency f in w have values, and the target of
f does not have a value, then the graph obtained by
evaluating the access procedure for f , replacing the
quantifier on the target concept with the value, and
erasing the question mark on the target (if present) is
also a working graph for 4.

The working graphs are steps along the way towards
answering a query. The following theorem shows that
when all the quantified concepts of a working graph have
been given values, the resulting values are the same as
those obtained from some answer graph. The theorem is
general enough to include algorithms that permit joins
arbitrarily remote from the original query graph as well
as algorithms that require each join to cover at least one
concept of the query graph.

Theorem Let S be a set of conceptual schemata, q be a
query graph, and w be a working graph for q. If no con-
cepts in w have quantifiers or question marks and if
every concept and conceptual relation of q has been
covered by a join with some schema from S, then the
values in w for the concepts of q having question marks
are the same as those obtained by joining q to some
answer graph that covers it completely.

Proof Let sl, sz, ' . ., by the sequence of schemata that
were joined to q in deriving w. Observe that the criteria
for joining a schema to a working graph are stronger
than the criteria for a schematic join; therefore, the sche-
mata sl, s2, . . . may be joined by schematic joins to
each other in the same order and position that they were
joined in forming w. The result of these joins is a schema
s that is isomorphic to w and contains the same composi-
tion of function links used to derive w. Since w has no
quantifiers left, the query graph q must have had values
to assign to each universal quantifier of s, and the results
of evaluating the access procedures must have generated 351

CONCEPTUAL GRAPHS JULY 1976

values for every existentially quantified concept. There-
fore, assign the values from q to the universal quanti-
fiers of s, and evaluate all access procedures to deter-
mine values for the existentials; the result is an answer
graph w’, which is isomorphic to w, has the same values
for corresponding concepts, but may have different sort
labels because of the different order of performing re-
strictions. Since the values generated for w satisfied all
the question marks of q, the same values of w’ must also
satisfy them. Therefore, a join of q to the answer graph
w’ would cover q and assign the same values as w to the
question marks of q.

This theorem means that any algorithm obeying the
conditions for deriving a working graph will generate a
correct answer to a query provided that the set of sche-
mata do not permit incorrect answer graphs. The next
definition states preference rules for choosing between
various possible schematic joins. The preference rules
have no effect upon the correctness or incorrectness of
the answers generated; they are heuristic rules for en-
couraging joins that have a good chance of answering
the question while avoiding paths that are remote from
the original question. The preference rules lead to
graphs with high ‘Isemantic density” as in the technique
of preference semantics that Wilks [32] developed for
analyzing natural language.

Dejinition Let S be a set of schemata, q be a query
graph, and w be a working graph for q. Then if j is any
schematic join either of w with itself or of w with some
schema in S, the preference score for the join j with w is
the sum of the points determined by the following condi-
tions:

Add a point for each concept in w that is covered by j .

Add an additional point for each concept in q that is
covered by j . If this value is zero, then reject j .

If a concept in w having a question mark is covered by
a target of a function link, then add a point; if it is
covered by a source of a function link, then subtract a
point.

If a concept in w that has a value is covered by a
source of a function link, than add a point; if it is
covered by a target of a function link, then reject j .

For each concept and conceptual relation in q that has
not yet been covered by any join, add a point if it is
covered by j .

If every possible join has been rejected, then there is
no preferred join. Otherwise, the one or more schematic
joins with the highest preference score are preferred

352 joins.

JOHN F. SOWA

The preference rules are simply guidelines for choos-
ing between alternative joins. If they require too much
computation for a particular implementation, then the
rules may be modified or replaced without fear of gener-
ating incorrect answers. One way of speeding up the
search for preferred joins is to index the schemata ac-
cording to the concepts they contain: one index for the
selector concepts of a schema, another for the target
concepts, and another for the source concepts. Then,
instead of computing preference scores for all possible
joins, the system could pick a question mark in the
query graph, look in the index for a target concept that
had a common subsort, and choose a join with that sche-
ma if its preference score was above a given threshold.

Dejinition Let S be a set of schemata and q be a query
graph. Then the following procedure for generating
working graphs for q is called algorithm C:

w: = q ;
while (there is a preferred join j with W)

do begin
w: = result of performing j with w;
while (there is a source concept a in w

& a does not have a value
& a does not have a question mark
& the target of a has a question mark)

do place a question mark on a;
while (there is a target concept b in w

& b has a question mark
& all sources of b have values)

do get a value for b from its access procedure;

and all of q has been covered by some join)
if (there are no question marks left in w

then begin
print answer;
stop
end

end.

If there are any question marks left on w and no pre-
ferred joins to perform, then each universally quantified
concept having a question mark is called a prompting
point.

A prompting point is where the system begins when it
asks a question to get further information. This method
of prompting is similar to Heidorn’s technique in his
simulation system. Without prompting, algorithm C is not
able to generate all possible answer graphs because each
preferred join must cover at least one concept of the
query graph; questions that require remote searches
cannot be answered automatically. Furthermore, algo-
rithm C does no backtracking; in cases where the set of
schemata permit many possible combinations, the algo-
rithm might try one combination that would preclude

IBM J . RES. DEVELOP.

others. If there are no question marks left on the working
graph but not all of the query graph has been covered by
some join, then either the original query contained ir-
relevant information or the system has found an alterna-
tive path through the data base that answers a question
different from the one the user asked. In such cases, too,
it would require help to get out of its predicament.

A system based on algorithm C would do what it was
told explicitly and whatever was obviously implied by
what it was told. Whenever it could not find an obvious
solution to a problem, it would come back and ask for
further instructions. A system that searched one level
deep would relieve the user of the need to specify much
tedious detail, and it could still answer arbitrarily com-
plex questions with some prompting. Although one
could relax the preference rules to let the system search
deeper, further searching would increase the system
overhead without substantially improving its usefulness.
As the example in the next section shows, algorithm C
can generate sophisticated inferences without a great
deal of searching.

By computing an answer graph, the system can deter-
mine the state of some entities in the data base in answer
to a specific question. If the user had asked a question
containing Boolean connectives, the system would have
to generate separate answers for each part of the ques-
tion and then combine them according to the type of
connective. If instead of asking about a specific entity
such as PERSON:Lee, the question had been about all
persons having a certain attribute, then the system
should not compute an answer graph with specific values
for the concepts; instead, it should generate a schema
that could be repeatedly evaluated for every person.
Any method, such as algorithm C, that can be used to
generate specific answer graphs can also be used to de-
termine a schema simply by erasing the values on the
answer graph and saving the functional dependencies. A
schema with its access procedures is a specialized pro-
gram for answering query graphs of a particular shape;
once the schema has been found, it can be evaluated for
every element of a set. With extensions for Boolean
connectives and repeated evaluations over sets, concep-
tual graphs could form the basis of a general data base
query facility.

Example
Suppose a computer user typed in the question “What
was Lee’s age when hired?” If the system had a relation
for all employees and their ages at time of hire, it could
immediately find the answer. In most systems, however,
that question would not be asked often enough to justify
space for everybody’s age when hired. To get an answer
to that simple question, the user would have to find
Lee’s date of birth from one relation, find his date of hire

I
AGE: ? TIME

Figure 20 Query graph for “What was Lee’s age when hired?”

from another relation, and then call a function to sub-
tract the two dates. A system having conceptual graphs
for its user interface, however, could accept the question
as stated in English and determine for itself what rela-
tions and procedures to access.

Assume that the input analyzer can translate the
user’s question into the query graph shown in Fig. 20.
The concept PERSON has the value Lee, and the value
of AGE is to be determined. The conceptual relation
CHRC has been borrowed from the TORUS system; it
may be read “is a characteristic of.” To determine which
relation to insert between PERSON and AGE, the input
analyzer would follow the rule that the preposition “of”
or the possessive case marker ‘“s” indicates an unspeci-
fied relation between two nouns; the analyzer would
search through its starting set of conceptual graphs and
find CHRC as the default relation between AGE and
PERSON. The conceptual relation A T is used for
moments of time; the relation LOC is used for spatial
locations. The input analyzer will translate phrases of
the form ‘‘X when y” into a graph were x and y are shown
to occur at the same time. Since “hired” is a passive
participle, PERS0N:Lee is linked as the patient of
HIRE; for the question “What was Lee’s age when hir-
ing?” PERS0N:Lee would be the agent of HIRE.

Since the question mark on AGE cannot be propagat-
ed anywhere, the system must find some schema to join
to the query graph. It naturally starts with the concept
AGE, which has the question mark, and searches for a
schema in which AGE is functionally dependent on
something that is computable. Figure 21 shows such a
schema, which gives the definition of AGE. Associated
with this schema are access links to a data base relation
for a person’s date of birth and an access procedure that
computes the difference of two dates.

The definition of AGE is in second normal form, but
not third normal form because there is a transitive de-
pendency of AGE upon DATE and then upon PER-
SON. The BIRTH relation in the data base, however,
may be stored in third normal form if convenient. This
example illustrates the point that a schema may present
a view of the data base different from the one that is ac-
tually stored. A complex schema can sometimes im-
prove efficiency by reducing the number of steps in a
data base inference. 353

CONCEPTUAL GRAPHS JULY 1976

DATE: V
/

/

9 BIRTH

t

\
\
\
\
\

I
I
I

‘\ ,P DIFFERENCE

‘\ \\ t
L

DATE:E’

Figure 21 Schema for defining AGE.

PERSON AGE DATE

Figure 22 Maximal common projection of Figs. 20 and 21

Since DATE < TIME, Fig. 22 is a maximal common
projection of the query graph with the schema in Fig. 21
having as a kernel the three concepts AGE. To compute
the preference score for the join on this common projec-
tion, the system would add 3 points for the three con-
cepts covered by the join, 3 more points because all
three concepts are in the query graph, 1 point because a
concept with a question mark is covered by a target
concept, 1 point because a concept with a value is
covered by a source, and 5 extra points because five
concepts and conceptual relations of the query graph
that had not previously been covered are covered by this
join; the total preference score is 13. A join with the
schema for HIRE (Fig. 16) would have a score of 12; it
is almost as good, but the join with Fig. 21 is the pre-
ferred join.

The schematic join of Fig. 21 with the query graph is
the working graph in Fig. 2 3 . In forming the join, the
universal quantifier on PERSON is replaced with the
value Lee, and the universally quantified concept DATE
replaces the indefinite concept TIME. The question
marks are propagated from targets to sources of func-
tional dependencies, according to algorithm C.

When the question mark reaches PERSON:Lee, the
system can use the access links to find Lee’s date of
birth from the data base. This value will satisfy one ar-
gument of DIFFERENCE. The other argument, how-
ever, has a question mark that cannot be propagated fur-
ther. The system must find a schema in which the con-
cept DATE is functionally dependent on some concept

354 that has a known (or computable) value. The schema in

Fig. 16 for the data base relation HIRE meets these cri-
teria, and a join with Fig. 16 is now the preferred join;
its preference score would be I 1. The schema in Fig. 2 1
could not be joined again to the working graph in the
same position as before, because a maximal join would
cause two existential quantifiers to be joined, and such
joins are prohibited by the rules for a schematic join.
When the schematic join of Figs. 16 and 23 is performed,
PERS0N:Lee is restricted to EMPL0YEE:Lee. The
system must therefore check the data base to determine
whether Lee is an employee; if he is, the system can de-
rive Fig. 24.

When the schema for HIRE is joined to the graph, the
question mark on DATE is propagated back to EM-
PL0YEE:Lee. Since the source of the functional de-
pendency has a value, the system can access the data
base to find Lee’s date of hire. Now both arguments of
DIFFERENCE have values, and the access procedure
can compute Lee’s age. Note that the HIRE schema
contains information about the manager, which is irrele-
vant to the current question; since it is not needed, it
would not be evaluated. A good property of this tech-
nique is that schemata can be arbitrarily complex, and
the system will simply ignore the unneeded information.

Once the answer has been generated, the functional
dependencies in Fig. 24 are no longer needed. But if the
user wanted to know the age when hired for Smith,
Jones, and others, then the system should save the
dependencies. The concepts and conceptual relations
define the meaning of the domains and their interrela-
tionships; the functional dependencies are a data flow
graph for computing the actual values. If the same func-
tion is to be evaluated repeatedly, the system could
erase the current set of values and compute new values
using the same functional dependency graph. For optim-
ized execution, the system could even compile the func-
tional dependencies into COBOL or pL/I.

Towards a natural interface
As a computer interface, English has been much ma-
ligned for its supposed wordiness. Part of the blame for
the bad reputation must be borne by “English-like’’ lan-
guages, such as COBOL, which often do little but pad a
formal notation with English prepositions. One query
language, for example, has the following notation:

SKILFILE JOBCODE EQ ‘ENG’
SKILCODE EQ ‘GERMAN’
LOC EQ ‘NY’
LIST EMPLOYEE MANNBR DEPT SVCYRS.

The language has a macro facility that can provide an
English-like interface. When the necessary macros have
been defined, the system can translate the following
English sentence into the above notation:

JOHN F. SOWA IBM J. RES. DEVELOP.

From the skills inventory get me the name, man number,
department, and years in service of the engineers with
knowledge of German located in the New York area.

For a practical system, such a half-hearted approach to
English is useless. Whereas macros generally reduce the
amount of typing, this macro is 74% longer than the
formal notation. Furthermore, the phrase “From the
skills inventory” may be easier to read than “SKIL-
FILE,” but it is no easier to remember. The macro lan-
guage requires every phrase to be defined by a unique
rule; “years in service” is translated to “SVCYRS” by
one rule, but “years of service” would require a separate
rule. A more natural interface should accept the follow-
ing request:

For engineers in New York who know German, list
name, man no., dept., service years.

This sentence is shorter than the formal notation and is
easier to read than the English-like macro. It is also eas-
ier for the user to learn because it omits the file name
“SKILFILE” and does not use the odd abbreviations
“MANNBR” or “SVCYRS.” Because it omits the file
name, it cannot be translated to the formal notation by a
change of syntax; instead, the system must use semantic
mechanisms like the conceptual schema, which deter-
mine system dependencies as a result of processing the
English sentence.

Although the above example required fewer key-
strokes for the English syntax than for the formal nota-
tion, the primary advantage of natural language is not in
syntax but in semantics. During a conversation, the
most important semantic features appear in dialogue,
inference, and metalanguage:

Dialogue Natural languages are used in a dialogue
where both parties contribute to the conversation and
ask questions to clarify or expand an incomplete mes-
sage.

Inference Most sentences can be short and simple
because the listener is expected to fill in the “ob-
vious” gaps. A complete theorem proving system is
not necessary to understand English, but a technique
for inferring the obvious is essential.

Metalanguage English is its own metalanguage. It can
be used either to talk about a subject or to talk about
what can be said about the subject; it can therefore
support prompting and help facilities in the same lan-
guage used for queries and programming.

These three features of natural language are the areas
where conceptual graphs can make the biggest contribu-
tion. Inference was emphasized in this paper, but con-
ceptual graphs can also help in dialogues and metalan-

\

\
\
\
\
\

t

L
Figure 23 Working graph.

””+ MANAGER:E‘

/
/’

/

/””-”””””””””” 7

Figure 24 Final working graph.

guage. Prompting methods have already been men-
tioned, and many of Heidorn’s dialogues can be adapted
to conceptual graphs with little more than a change of
notation. For help facilities, the same conceptual sche-
mata used to access the data base could be translated
into English sentences to answer a user’s questions
about command and data formats. By using the same
schemata for accessing data and for generating mes-
sages, the system would guarantee that the diagnostic
and help facilities would always be consistent with the
implementation. 355

CONCEPTUAL GRAPHS JULY 1976

Codd [33] emphasized the importance of a natural
language interface for the casual user. Yet even the most
experienced system programmers write comments in
their native language because they find it more under-
standable and expressive than a programming language.
The same properties that make English good for queries
also make it good for programming: the abilities to sup-
port a dialogue for problem definition, to take care of
machine dependent details without the user’s assistance,
and to answer questions about formats and conventions.
A program to be executed in batch mode, where perfor-
mance is critical, should not go through an interpretive
natural language interface for every data base access;
instead, the programmer could use that interface while
writing the program and then have the system compile
the accesses into a standard language for optimized exe-
cution.

Suppose a programmer asked “Give me a COBOL pro-
cedure to compute a person’s age when hired.” For this
case, the system would not derive an answer graph from
the data base. Instead, it would derive a general schema
for computing age when hired for any person. Every
schema in the schematic universe is a general function.
For a one-shot query, the system uses the schema only
once; but for automatic programming, the system could
compute a schema as though it were answering a query
and then translate the schema into a program. Instead of
immediately executing the calls upon access procedures,
the system could compile them into COBOL statements,
which the programmer could insert into a program for
batch execution. The programmer could use the query
facility as a programming assistant that would handle the
machine dependent details of data base accesses.

For a system of distributed computers, conceptual
graphs can support a clean separation between the mes-
sage handling and the data base accesses. Instead of
calling the access procedures for each value requested
for some target concept, algorithm C could be modified
to make all of the accesses at the end of the derivation.
If the data base processor is in a different computer from
the input analyzer, all of the prompting and interaction
could be handled by a local computer, and only a list of
specific accesses would need to be sent to the data base
processor. This separation would be especially useful if
the data base had a relatively small number of relations,
but a very large number of entries in each relation: a
computer that did message handling would only need a
few schemata that could be stored on an ordinary disk,
but the data base processor would require a mass stor-
age facility.

Conceptual graphs are precise enough to support logi-
cal inferences and data base accesses, yet they are rich
enough and flexible enough to serve as a semantic basis

356 for natural language. As a formal notation, the graphs can

JOHN F. SOWA

be used directly by the data base designer for represent-
ing and analyzing relationships between various domains
in the data base; displays and plotters could present the
graphs for a two-dimensional view of the data base. The
designer could see the graphs on a display, but the end
user would not be aware of them. Instead, conceptual
graphs could support an interface that would let the user
talk about familiar data in a familiar terminology without
the need for special query languages and computer-
oriented conventions.

Acknowledgment
The ideas in this paper have evolved over a long period
of time and have benefited from suggestions by numer-
ous friends and colleagues. I especially thank J. M.
Cadiou, A. K. Chandra, E. F. Codd, R. L. Griffith, G. E.
Heidorn, H. D. Mills, C. P. Wang, and M. Wilson from
IBM, L. G. Creary, professor of philosophy at Case
Western Reserve University, and the tinknown referees
who forced me to make this a better paper.

This paper contains some material from a forthcoming
book entitled Conceptual Structures: Informution Pro-
cessing in Mind and Machine to be published by the
Addison-Wesley Publishing Co. as one volume in the
IBM Systems Programming Series.

References and notes
1. E. F. Codd, “A Relational Model of Data for Large Shared

Data Banks,” Commun. ACM 13, 377 (1970).
2. N. Roussopoulos and J. Mylopoulos, “Using Semantic

Networks for Data Base Management,” Proceedings of the
International Conference on Very Large Datu Bases,
ACM, New York, 1975, p. 144.

3. C. E. Heidorn, “Automatic Programming through Natural
Language Dialogue,” IBM J . Res. Dev~4op. 20, 302 (1976,
this issue).

4. Comp//tcr Modc.1~ of Thought dnd Lunguuge, edited by
R. C. Schank and K. M. Colby, W. H. Freeman and Com-
pany, San Francisco, 1973.

5. Representation and Understanding: Studies in Cognitive
Science, edited by D. C. Bobrow and A. Collins, Academic
Press, New York, 1975.

6. M. M. Astrahan and D. D. Charnberlin, “Implementation

A C M 18, 580 (1975).
of a Structured English Query Language,” Cornmun.

7. R. F. Boyce, D. D. Chamberlin, W. F. King, and M. M.
Hammer, “Specifying Queries as Relational Expressions:
The SQUARE Data Sublanguage,” Cornmun. ACM 18,
621 (1975 j .

8. M. M. Zloof, “Query by Example,” A F l P S Con$ Proc.,
Nut . Comput. Conj:, 1975 p. 43 I .

9. Note that an employee number is not a common subsort of
EMPLOYEE and NUMBER. Instead, it is a subsort of
NUMBER that bears a particular relationship to EM-
PLOYEE.

10. C. J . Fillmore, “The Case for Case,” Univc~rsals in Linguis-
tic Theory, edited by E. Bach and R. T. Harms, Holt, Rine-
hart and Winston, New York, p. 1.

1 1 . In the more complete theory, presented in a forthcoming
book [27], there is only one primitive conceptual relation,
named LINK. All others are defined by the process of rela-
tional abstraction, which is essentially the lambda calculus

I B M J. RES. DEVELOP.

generalized to graphs. This paper, however, presents a re-
stricted version of the formalism, in which the conceptual
relations are fixed in advance.

12. A. Schmidt, “Uber deduktive Theorien mit mehreren Sor-
ten von Grunddingen,” Mrrth. Ann. 115, 485 (1938).

13. H. Wang, “The Logic of Many-Sorted Theories,” J . of
Symbolic Logic 17, 105 (1952).

14. J. J. Katz and J. A. Fodor, “The Structure of a Semantic
Theory,” Language 39, I 70 (1963).

15. For a study of the increased expressive power introduced
by such a notation, see W. J . Walker, “Finite Partially Or-
dered Quantification,” J . Symbolic Logic 35, 535 (1970).

16. A standard technique in methods of theorem proving is to
replace existential quantifiers with Skolem functions, cf.
J . A. Robinson, “A Machine-Oriented Logic Based on the
Resolution Principle,” J . Assoc. Comput. Much. 12, 23
(1965). As a general method of representing quantifiers,
however, this technique fails because the resulting formula
is no longer equivalent to the original. When an existential
quantifier specifies a unique entity, however, then the lines
of scope determine a unique function, and the functional
form is equivalent to the quantifier notation.

17. W. A. Woods, “Procedural Semantics for a Question-An-
swering Machine,” AFIPS Con$ Proc., Fall .It. Comput.
Conf., 1968 p. 457.

18. T. Winograd, “Frame Representations and the Declarative-
Procedural Controversy,” Representation and Understand-
ing: Studies in Cognitive Science, edited by D. G. Bobrow
and A. Collins, Academic Press, New York, 1975.

19. R. W. Weyhrauch and A. J . Thomas, “FOL: a Proof
Checker for First-Order Logic,” Memo AIM-235, Stanford
Artificial Intelligence Laboratory, NTIS #AD/ A-006 898,
1974.

20. See Codd [I] , p. 385, for a discussion of the connection
trap.

21. J. E. J. Altham and N . W. Tennant, “Sortal Quantifica-
tion,” Formal Semantics of Natural Language, edited by
E. L. Keenan, Cambridge University Press, p. 46.

22. E. F. Codd, “Further Normalization of the Data Base Re-
lational Model,” Data Base Systems, edited by R. Rustin,
Prentice-Hall, Englewood Cliffs, N.J., 1972, p. 33.

23. A greater-than join of two data base relations could be repre-
sented by joining their schemata with the schema for the
greater-than relation.

JULY 1976

24. Interim Report, A N S I / X 3 / S P A R C , Study Group on Data
Base Management Systems, reprinted in FDT, ACM-
SIGMOD 7, 1975.

25. L. Wittgenstein, Tractatus Logico-Philosophicus, Routledge
and Kegan Paul, London.

26. P. C . Wason and P. N. Johnson-Laird, Psychology of Rea-
soning, B. T. Batsford, London, 1972.

27. J. F. Sowa, Conceptual Structures: Information Processing
in Mind and Machine, Addison-Wesley, Reading, Mass., to
be published.

28. W. J. Plath, “REQUEST: A Natural-Language Question-
Answering System,” IBM J . Res. Develop. 20, 326 (1976,
this issue).

29. S. R. Petrick, “On Natural Language Based Computer Sys-
tems,” IBM J . Res. Develop. 20, 3 14 (1976, this issue).

30. G. E. Heidorn, “English as a Very High Level Language
for Simulation Programming,” Proceedings of the Sympo-
sium on Very High Level Languages, SIGPLAN Notices
9, (April 1974), p. 91.

31. Readers who are familiar with the resolution principle
should note the parallels between schematic joins and
Robinson’s unification algorithm [161. Both techniques in-
volve universally quantified functional compositions and the
set of all possible answer graphs is theanalog of the Herbrand
universe. Algorithm C may be interpreted as a heuristic
method for finding an element of the Herbrand universe
that answers the user’s question.

32. Y. Wilks, “An Intelligent Analyzer and Understander of
English,” Commun. A C M 18, 264 (1975).

33. E. F. Codd, “Seven Steps to Rendezvous with the Casual
User,” Data Base Munagement, edited by J. W. Klimbie
and K. L. Koffeman, North-Holland Publishing Co., Am-
sterdam, (1974) p. 179.

Received April 2, 1975; revised Februury 23, 1976

The uuthor is located at the I B M Systems Reseurch
Institute, 219 E. 42nd Street, N e w York, N Y 1001 7.

357

CONCEPTUAL GRAPHS

