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A parser  applies  grammar  rules  to  generate  a 
parse  tree  that  shows  the  syntactic  structure  of 
a  sentence.  This  paper  describes  a  semantic 
interpreter  that  starts  with  a  parse  tree  and 
generates  conceptual  graphs  that  represent  the 
meaning of the  sentence. To generate 
conceptual  graphs,  the  interpreter  joins 
canonical graphs associated  with  each  word  of 
input.  The  result is a  larger  graph  that 
represents  the  entire  sentence.  During  the 
interpretation,  the  parse  tree  serves  as  a  guide 
to  show  how  the  graphs  are  joined.  Both  the 
front-end  parser  and  the  back-end  semantic 
interpreter  are  written  in  the  Programming 
Language  for  Natural  Language  Processing 
(PLNLP). 

Introduction 
When people understand language, they  bring to bear  a  great 
deal  of  background knowledge. That knowledge can be 
organized into  four basic categories: 

0 Lexical: Information  about word forms. 
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Syntactic: Information  about word and phrase categories 
and their  ordering  in  sentences. 
Semanlic: Word  definitions, constraints on the use of 
words in well-formed sentences, and background 
information  about defaults and expectations. 
Episodic: Assertions about particular  things and events. 

Lexical and syntactic information is the easiest to represent 
and process in  a parser. But it is not sufficient to resolve all 
the ambiguities  in natural language; and by its nature,  it 
cannot  determine what  a  sentence  means. Semantic 
information is typically listed in  dictionaries, and episodic 
information is presented  in histories, biographies, 
newspapers, and encyclopedias.  Conceptual  graphs [ 11 are 
used to represent  both semantic  and episodic information. 
This  paper shows how a semantic  interpreter can  generate 
them from  a conventional parse tree. 

The parser used in this  project is the  PLNLP English 
parser developed by Jensen  and  Heidorn [2]. It uses a 
machine-readable  dictionary of over 70000 words with a 
grammar  that is complete enough  to handle almost  any 
English sentence. By a technique of j t ted parsing, it can 
even handle ungrammatical  sentences,  fragments of 
sentences, and irregularly formed lists and phrases. Yet the 
parser uses only syntactic  rules to generate parse trees. The 
semantic  interpreter translates those trees into conceptual 
graphs by the following steps: 

For each word of input, it accesses a lexicon of canonical 
graphs, which represent the default ways that concepts and 
relations are linked together  in well-formed sentences. 



The  interpretation of  a complete sentence  is formed by 
joining  the small canonical graphs  associated  with each 
word to  form a large graph that represents the  entire 
sentence. 
The parse trees  guide the  semantic  interpreter by 
determining  the  order of doing joins. 
Semantics helps to resolve syntactic  ambiguities by 
rejecting  parse trees for  which the  joins  are blocked. 

To illustrate this  approach, consider the sentence John 
went to Boston by bus. Figure 1 shows  a parse tree generated 
by the  PLNLP English parser for  this sentence. DECL 
indicates that  this is a  declarative  sentence, and  the asterisks 
show the head constituents of each phrase and subphrase. 
The internal PLNLP records  actually contain  more detail 
than Fig. 1 shows: They indicate the past tense  of went, the 
singular  forms  of John, Boston, and bus, and  other syntactic 
and morphological features. 

The  semantic  interpreter generates the  conceptual graph 
in Figure 2 from  the parse tree  in Fig. 1. The boxes represent 
concepts, and  the circles represent conceptual relations. 
Every concept  implicitly  asserts the existence  of something 
of the corresponding type: This graph asserts the existence  of 
John, a  bus, an instance  of going, and  the city  of Boston in 
the role of place. It further asserts that  John is the agent  of 
going, a bus is the  instrument,  and Boston is the destination 
of going. To represent the past  occurrence of this situation, 
the  monadic relation  PAST  is attached to a context that 
encloses the  entire graph. To save  space on  the printed page, 58 
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Fig. 2 can also be written  in the linear form with square 
brackets to represent concepts  and  rounded parentheses to 
represent  conceptual relations: 

(PAST) + [[GO]- 
(AGNT) -+ [PERSON: John] 
(DEST) -+ [CITY-PLACE:  Boston] 
(INST) + [BUS]]. 

Besides mapping parse trees to conceptual  graphs, the 
semantic  interpreter also  checks constraints  on well-formed 
sentences. For  the  anomalous sentence, Boston went to birds 
by spaghetti, the  PLNLP parser  does not check any 
constraints  and generates  a tree of exactly the  same  shape as 
Fig. 1. The  semantic interpreter, however, would reject that 
sentence because the  canonical graph for GO requires  a 
MOBILE-ENTITY  as  agent and a  PLACE as destination. 
This  method of  allowing the parser to accept anomalous 
sentences and rejecting them in the  semantic stage is fairly 
common. It contrasts with two other  common approaches: 

Detailed syntactic parsing: Some parsers require very 
detailed  syntactic  features  for every word in  the lexicon. 
By using syntactic  rules to check the features,  they can rule 
out  the possibility of Boston as  the subject  of went. 
Conceptual parsing: Schankian-style  parsers [3,4] 
minimize  the role of syntax and use the  conceptual 
representation as a  guide to selecting words from  the  input 
sentence. Some of these  parsers may actually ovemde 
word order  and force birds to be the agent and Boston the 
destination  of went. 

Splitting the parser and  the  interpreter simplifies both, while 
making them  more general and easily extendible. Since the 
PLNLP English parser uses simple  features,  it can  take 
advantage  of conventional machine-readable  dictionaries. 
More detailed parsers, however, require highly complex, 
specially encoded lexicons; none of them have the range of 
coverage of the  PLNLP parser. Although the  semantic 
interpreter requires  a specially encoded  lexicon  of  canonical 
graphs,  they are purely declarative graphs  that  are easier to 
generalize than  the  more procedural  code in  the Schankian 
parsers. With  a different collection of graphs, the  semantic 
interpreter  can be adapted  to different domains without any 
change to  the underlying  procedures. 

Metaphor is another reason for separating the parser and 
the  semantic interpreter.  Consider the sentence, Boston went 
to  the dogs. Although  it is semantically anomalous, it has a 
metaphorical interpretation  that Boston  deteriorated in  some 
way. A  detailed  syntactic  parser  would reject that sentence 
completely.  A conceptual parser  might  misinterpret it  as 
meaning  that  the  dogs  went  to Boston. Yet  the  PLNLP 
parser  would handle it correctly. After the  semantic 
interpreter failed to generate  a conceptual graph  for  it, the 
parse tree could be passed to a metaphor interpreter. 
Although  a metaphor  interpreter has not yet been  written for 
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this project, this  approach allows one  to be added as  an 
extension to  the  normal processing. 

Logical level 
Conceptual graphs are formally  defined, with theorems  and 
proofs that  demonstrate  the relationships between various 
aspects. There  are two major aspects  of the theory that  must 
be considered: 

Propositions: The  meaning of a declarative  sentence  is a 
proposition. For questions, the  meaning is a proposition 
whose truth is to be determined.  For  commands,  the 
meaning is a proposition  stating the result to  be achieved. 
To  handle  any of these cases, the  semantic  interpreter 
must generate a conceptual graph that states a logical 
proposition. 
Semantic  network: The background knowledge needed to 
interpret  sentences is more general than  any particular 
sentence. It is organized as a hierarchy  of  concept  types 
together with their definitions, the  constraints  on 
combining  them,  and  the associated defaults and 
expectations. 

The graph  for John  went to Boston  by  bus is an example  of 
episodic information  that asserts a particular  proposition. To 
generate the graph that states that proposition (Fig. 2), the 
semantic  interpreter  joins  other graphs taken  from  the 
semantic network. Conceptual  graphs therefore serve two 
purposes: They  may be used by themselves to  state 
propositions; but when  stored  in the  semantic network,  they 
serve as templates or patterns  that  may be used to generate 
other graphs. 

Before the  operations  on  conceptual  graphs  can be 
implemented, each  formal  object  in the theory must be 
mapped  into an appropriate  data structure. Following are 
the basic objects to be represented: 

Concepts with type labels and referents. 
Conceptual  relations with type labels and arcs. 
Conceptual  graphs, which are interlinked concepts  and 

Contexts, which are concepts  of type  PROPOSITION. 
They  support a nesting of  conceptual graphs  to express 
negations,  modality, and propositional  attitudes. 
Lambda  abstractions, which are conceptual  graphs with 
one  or  more concepts  designated as formal parameters. 
A lexicon for mapping word forms  to their  syntactic 
categories and concept types. (In the  book [I],  the lexicon 
is not formally  defined, but it is informally  represented by 
the lists in Appendix B.) 

relations. 

Other objects  in the theory are specialized uses of these: 
A canonical graph is  simply a conceptual graph that is 
associated with a concept or relation  type; a type  definition 

is a lambda abstraction  associated with a type label; and a 
schema is also a lambda  abstraction,  but it is used for 
background information instead  of  definition. 

The  semantic network is a repository of general 
information  about  some  domain of discourse. It must be 
defined before the  semantic  interpreter  can begin to analyze 
sentences. During a dialog, the interpreter  builds  conceptual 
graphs for new episodic information by using the  semantic 
information  as a basis. For every type of concept and 
relation, there is a node in the  semantic network with the 
following associated information: 

Type label: Each  type of concept or relation is identified 
by an uppercase  character  string, called its  type label: 
CITY  and GO represent  types of concepts; AGNT  and 
DEST represent types of relations. 

primitives that  cannot be defined. Others  are defined by 
lambda abstractions. 
Canonical  graph: Every concept and relation  type has a 
conceptual  graph that specifies the  constraints  on  the 
pattern of concepts  and relations that  may be linked to it. 
That graph  is called its  canonical  graph. 
Schema: A concept type  may have one  or  more  schemata 
that specify defaults,  expectations, and  other background 
knowledge. Although there is only one canonical  graph  for 
each type, there is no  limit  to  the  number of associated 
schemata. 

Type dejnition: Some  concept  and relation  types are 

Canonical graphs  show the external pattern of relationships 
that must be attached to  concepts of a given type. They  are 
primarily used in parsing input sentences. Type definitions 
show the  internal  pattern of  relationships that define a type. 
They are used in  drawing  inferences from  the  input. 
Schemata may be used for  parsing  in the  same way as 
canonical  graphs, but they are also used for plausible and 
default reasoning. 

The subtype and supertype  relations between concept 
types define a lattice. The  pointers  that represent the lattice 
link the types to form the  semantic network. Four basic 
operators  are defined on those types: 

Subtype: The  operator s defines a partial  ordering of 
concept types: PERSONSANIMAL; BUSSMOBILE- 
ENTITY;  GOsMOVE. 
Minimal common  supertype: For  any types A and B, the 
type AUB is the lowest one in the lattice that is above both 
A and B: PERSON U STONE = ENTITY. 
Maximal common  subtype: For  any types A and B, the 
type AnB is the highest one in the lattice that is below 
both A and B: CITY r l  PLACE = CITY-PLACE. 
Conformity: The  operator :: tests  whether an individual 
conforms  to a type: C1TY::Boston. 



These  operators  are defined theoretically  in [ I ] .  In the 
implementation, they must be defined by procedures that 
follow pointers up  and down the lattice. Other procedures 
must be implemented for the canonical formation rules of 
copy,  restrict, join,  and simplify. The derived formation rule 
of maximal  join is a combination of the simpler rules that is 
heavily used by the  semantic interpreter. The  remainder of 
this  paper shows  how the formal  objects are  mapped  into 
data  structures  and  the formal  operators are  mapped  into 
procedures. 

Implementation level 
As a  formally  defined  system, the theory  of conceptual 
graphs  could be  implemented in LISP, Prolog, or any  other 
programming language. This  paper describes  a  particular 
implementation in the  Programming Language for Natural 
Language Processing (PLNLP) [5, 61. PLNLP has facilities 
for parsing  text,  generating  text, and processing graphs. 
There were several reasons  for  choosing it as  the 
implementation language  for this project: 

It has  a  built-in, bottom-up parallel parser,  driven by 
augmented phrase structure  grammar rules (APSG). 
The  PLNLP English grammar written by Karen Jensen is 
one of the broadest coverage grammars available  for any 
natural language. 

represent  graphs, and  the language has  a powerful set of 
operators  for  building and traversing  graphs. 

The  PLNLP  data  structures  are specially designed to 

The basic data  structure of PLNLP is the record. Each 
record consists of  a  collection  of named  attributes with 
associated values. The values may  be simple atoms, or they 
may be pointers to  other records. For a conceptual graph, 
each node  (concept or relation)  is  represented by a single 
record. Altogether, eight different kinds of records are used 
in  this implementation: 

Concept records  represent the concept  nodes  (boxes)  in  a 
conceptual  graph. 
Relation  records  represent the relation  nodes (circles) in a 
conceptual graph. 
Context records are special cases of concept  records whose 
type is PROPOSITION,  but two additional fields are 
added  to speed up certain  operations. 
Concept type  records are  the central  directories  for 
semantic  information  about a  concept  type.  Type and 
subtype pointers link  these  records to form the  semantic 
network. 
Relation type records specify semantic  information  about 
a  conceptual  relation type. They  are similar  to, but slightly 
different from,  the concept  type records. 
Lambda records identify the formal parameters of lambda 
abstractions, which are used in  definitions and schemata. 

Lexical records  form  a  dictionary of word  forms. Each 
lexical record contains a list of  pointers to word-sense 
records. 
Word-sense  records specify the syntax and  semantics for 
each sense  of  a  word. The semantics is determined by 
pointers  to type  records and canonical graphs in the 
semantic network. 

The first attribute of each record is a tag that specifies one of 
these eight kinds  of records. The  other  attributes a record 
may  have are  determined by this tag. 

programming problems that occur  in natural language 
processing. PLNLP procedures can be written  either  as 
pattern/action  production rules or as more traditional 
sequential  programs.  A combination of  these  two  forms is 
used to  implement  the  semantic  interpreter algorithms. 
PLNLP  operators  support easy record creation, copying, and 
manipulation. When  a new name is encountered in  a  rule or 
program statement,  that  name is  automatically defined as a 
new record attribute. These  features result in  programs that 
are shorter and  more  understandable  than LISP code  for the 
same kinds of tasks. Since PLNLP is compiled into LISP, its 
performance on equivalent operations is the same. 

PLNLP is a high-level language designed for the kinds  of 

Concepts  and  relations 
Conceptual  graphs  represent  propositions.  They  may assert 
episodic information  about particular  individuals, or they 
may express general principles  in the  semantic network. Any 
representation must satisfy the following constraints: 

Connectivity: The algorithms  for language parsing, 
generation, and reasoning depend  on  the ability to  start 
from any concept and traverse the  entire  graph.  The 
implementation must support  some  form of forward and 
backward pointers linking all the nodes. 
Generality: Although  most  primitive conceptual relations 
are dyadic, the formalism allows relations with any 
number of arcs. Furthermore,  any concept may have any 
number of  relations attached  to it, and  the  number  may 
increase as  more assertions are made. The  implementation 
must support all these  options. 
No privileged nodes: Any  concept  in  a  conceptual  graph 
may be treated as  the head. The choice  of  concept to 
express as  a  subject or predicate depends  on focus and 
emphasis, but  the representation  should not presuppose 
one choice of root or head (as trees and frames typically 
do). 
Canonical formation rules: The  four rules of copy, restrict, 
join, and simplify are used throughout  the system in 
reasoning and parsing. The  implementation  must  make 
these operations fast and simple. 

Two different record representations were considered  for 
this implementation of conceptual graphs. The first 
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representation uses separate  records for relations and 
concepts, while the second treats relations as  attributes of 
concept  records. The first representation  takes more storage 
space, but it supports greater independence between 
concepts and relations. The second  representation saves 
some space and  may allow a more rapid  graph  traversal, but 
it increases the complexity of the record fields and creates 
difficulties in  dealing with relational contraction  and 
expansion. Both representations  have  merit. The first 
representation was chosen because it  has  greater flexibility 
and simplifies operations  on  the graphs. 

records and relation records. These  represent  individual 
occurrences or tokens of the concept and relation types. A 
concept record contains  the following attributes: 

0 A lagfield, indicating that  the record is a  concept  record. 
0 A typefield, which points to a  concept  type  record. 
0 A referentjeld, which specifies the referent for  individual 

A relation list, which points  to every relation record whose 

The nodes  in  conceptual  graphs are represented by concept 

concepts or a  quantifier  for  generic  concepts. 

arcs  are linked to  the  current concept. 

The referent field of  a  concept may  contain  any of the 
following values: 

A generic marker, represented by the * symbol. This 
marker represents an unspecified individual of the given 
type. 
An individual  marker, represented by # followed by an 
integer  identification number. 
A set referent, represented by a list of individual  markers. 
A generic set, represented by the symbol I*).  This indicates 
that  the referent of the concept is a set of zero or more 
unspecified elements. 
A quantifier, represented by a special symbol,  such as V. 
This symbol is not  one of the primitive  forms, but it can 
be expanded into  the primitive  forms by the operations 
defined on conceptual  graphs. 
A definite reference, represented by # without  a  trailing 
integer. This represents an  anaphoric reference to be 
resolved by a  coreference  link to  some  other concept. 
A measure of some  quantity, represented by the  marker @. 

For example, in the concept [SPEED: @55mph],  the 
marker @ shows that  55mph is a  measure of the speed, not 
its name or individual marker. 
A coreference link, which connects  the  current concept to 
a  concept in a dominating  context  that  has  the  same 
referent. 

it, the resulting conceptual  graphs may be traversed in any 
direction. 

In Fig. 2 ,  the  conceptual graph  for John went to Boston by 
bus is nested inside  a context  that is marked as past. Since 
context  nodes are  not discussed until the next section, Figure 
3 shows  only the records for the tenseless graph that is nested 
inside the context. 

Contexts 
C. S. Peirce [7]  introduced  contexts in his existential graphs 
as  a means of grouping  propositions. He used them  to 
represent  negation,  modality, and propositional  attitudes. 
The  contexts in conceptual graphs follow Peirce directly, but 
they are also similar to proposition  nodes [8]  and partitions 
[9] in other AI systems. A context record is a special case of a 
concept record of  type PROPOSITION.  The referent field of 
a context record contains a list of pointers, each indicating 
the head of one of the conceptual  graphs asserted by that 
proposition. 

find all the relevant information  about a  context, and  no 
other fields are needed in  a  context record. For efficiency, 

Logically, the  pointers in the referent field are sufficient to 

Relation  records contain a tag field, a  type field, and a however, two other fields are added: 
pointer for each arc. Since every relation record has  a 
pointer  to each of the concept  records linked to it and each 0 The catalog ofindividuals is a list of  pointers to all the 
concept record has  a list of  pointers to  the relations linked to concepts that  are existentially quantified  in the  current 
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’~~~~~~~~~~~~ occurrence  of [HOUSE: #] to  the  outer  one. Actions and 
~~~~~~~~~~~~~~~~~~ & states, such  as thinking  and believing, are treated  as 

indefinite references, unless they are described by gerunds 
with a  definite  article,  such  as the thinking or the believing. 
As a result of  interpreting this sentence, the system 
constructs  three nested contexts with the following catalog  of 
individuals: 

The  outermost  context has five individuals: Sam, Ivan,  a 
house, Sam’s thinking, and a  proposition that  Sam  thinks. 
Sam’s thought is a  context with three new individuals:  a 
kitchen, Ivan’s believing, and a  proposition that Ivan 
believes. 
Ivan’s belief is another  context with one new individual:  a 
cat. 

expanded into record form. 

context. This catalog  includes concepts of all types: Besides Lambda abstractions 
things,  it  includes  events,  attributes, and propositions A lambda abstraction is a conceptual graph with one or 
(nested  contexts). more generic  concepts  identified as formal  parameters. 
The environment link is a pointer  to  the  context in which Lambda  abstractions have  multiple uses in the theory: 
the  current  one is nested. 

Definitions: Monadic  abstractions  are used to define 
The nesting of contexts is analogous to  the nesting of concept types, and n-adic abstractions  are used to define 
procedures and begin-end blocks  in  ALGOL-like languages. n-adic relation types. 
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Single-use types: Instead  of  a permanently defined type 
label, the type field of a  concept may contain a lambda 
abstraction that is created for a single use. These lambda 
abstractions are  commonly created for restrictive relative 
clauses. 
Schemata: Like type  definitions, schemata  are  lambda 
abstractions. Unlike type definitions, which specify 
necessary and sufficient conditions, schemata specify 
defaults and expectations.  They are similar  in  structure, 
but different in use. 
Aggregations: New individuals may be defined as 
aggregations of  parts.  These aggregations are typically 
constructed by specializing the  concepts of  a lambda 
abstraction. 
Prototypes: A typical individual  may be represented by a 
prototype. It has the  same  structure  as  an aggregation, but 
with average or default values rather than particular 
values. 

To continue  the analogy with ALGOL-like languages, a 
context is like a begin-end block, and a lambda abstraction is 
like a procedure header. 

Implementing  lambda abstractions  requires  a new kind  of 
record, the lambda record. It has the following fields: 

A tagfield, indicating that  the record is a lambda record. 
A parameter  count, which specifies the  number of  formal 

A pointer for  each  formal parameter  to  some generic 
parameters. 

concept  of the conceptual  graph that serves as  the body of 
the  lambda abstraction. 

A lambda abstraction can be used to define the relation 
quanfity on hand, with a type label QOH. A  database system 
that has  repeated references to  part  numbers  and  the 
quantity of the  items in stock  may use a  relation QOH 
defined by the abstraction  in Figure 6. 

the body  of the  lambda abstraction. The  concepts tagged 
with the variables x and y are  the formal  parameters. The 
relation QOH has  two arcs. Its  type  node  has  a  definition 
attribute  pointing  to a lambda record, whose record 
representation is shown  in Figure 7. 

beats  it. The restrictive relative clause who owns a donkey 
indicates that  the quantifier every ranges over the donkey- 
owning  farmers. One way to show that is to define a special 
type DONKEY-FARMER in the  semantic network. 
However, it  would be wasteful to  clutter  up  the type 
hierarchy with a special type for every such clause. 
Therefore,  a single-use lambda abstraction may be defined 
for  this clause. Figure 8 shows that this lambda abstraction is 
placed in the  type field of the quantified  concept. In the 
record representation, the  type field would point  to  the 

The  conceptual graph  in the relational  definition serves as 

Consider the sentence, Everyfarmer who owns a donkey 

F Record representation of the lambda node for QOH 

3 Single-use lambda abstraction for a relative clause 

lambda record instead  of  a  type record in the  semantic 
network. 

Figure 8 does  not show that  the concept [ENTITY:#], 
which arises from the  pronoun it, is coreferent with the 
concept [DONKEY]. Resolution of anaphora proceeds from 
inside out: A coreference  link  may  only be drawn  from  a 
concept with # in its referent field to  another concept  in the 
same  context or a dominating (enclosing)  context. Before the 
anaphora can be resolved, the universal quantifier V must be 
expanded into  the primitive Peirce form.  This expansion is 
discussed in the section on operations. 

Semantic network 
The  semantic network is represented by a collection of type 
records for concepts  and relations  together with the 
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canonical  graphs  for  each  type.  Subtype and supertype 
pointers  in  the  concept type  records  represent the  type 
lattice. A concept type record has  the following fields: 

A tugfield, indicating  a  concept  type record. 
A type label, containing a character string that identifies 

A dejnitionfield, which can  either be nil or point  to a 

A canoniculgruph pointer, which points  to  the head of the 

the concept type. 

lambda record for  a monadic  lambda abstraction. 

associated canonical graph. 

A supertype pointer list, which points  to all the supertype 
records  for the given type. 
A subtype pointer list, which points  to all the subtype 
records for the given type. 
A schema pointer list, which points  to  the  lambda records 
of all the  schemata associated with the given type. 

An additional field  will be added for prototypes, but they are 
not yet implemented. Figure 9 shows a canonical graph for 
the concept  type GO. This graph  shows that a MOBILE- 
ENTITY is the agent  of GO and  that  some PLACE is the 
destination. 

Figure 10 shows the type record for GO with the record 
form of the canonical  graph. This diagram  shows explicit 
pointers from each concept and relation record to  the type 
records. Note  that  the box and circle notation shows the type 
labels written  inside the nodes. In the record form, the 
character  string  form  of the type label is written  only in the 
type  record. Both representations are consistent with the 
formal  definition, which only says that  there  must be a 
function type(c) that  maps a  concept c into a  type label. 
That  function  may be supported  either by a label in the 
record or by a pointer  to  some  other record that has the 
actual label. For efficiency, a pointer is better in the 
computer  implementation: To use the  character form to 
locate the type record would  require an associative search or 
a hash-coded table. Since humans  are  better  at associative 
searches than  at tracing  lines on complex  diagrams, type 
labels are better in diagrams designed for people. 

therefore,  they  have no supertype and subtype  pointer lists. 
Instead,  relation  type  records  have an arc countjield, which 
indicates  how many arcs are linked to relations of that type. 
Otherwise, the type record for  a  relation is similar to  that of 
a concept;  both  type records  have  a tag field, a  type label 
field, a  canonical  graph  pointer, and a  definition field. If the 
relation is primitive, then  the definition field is nil; but if a 
new relation type  has been defined, then  the definition field 
points  to a lambda record. A type record for the primitive 
relation AGNT is shown  in Figure 11 .  

Relation  type  records are  not linked  in  a  hierarchy; 

Lexicon 
The lexicon maps word forms to syntactic categories and 
concept types. For each word in the lexicon, there is a lexical 
record that  contains a tag field, the word form,  and a list of 
pointers for each word sense. Since each word sense may 
have  a different syntactic category, the word sense record 
must have four fields: 

A tag field, indicating that it is a word sense record. 
A syntax field, specifying the syntactic category for the 

A type field, pointing to  the concept  type record for the 
word sense. 

particular word sense. 
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A head field, pointing to  the concept of the canonical 
graph for the associated type that serves as  head when the 
concept is expressed by a word of the specified syntactic 
category. The head  concept of a  canonical  graph is the 
starting point for doing  joins,  but  the  same graph may 
have different heads when considered from different 
viewpoints. 

Figure 12 shows the lexical record for hand with word sense 
records for two different senses. The first word sense record 
corresponds  to  the use of hand as  a noun referring to  the 
body  part (concept type HAND);  the second to its use as  a 
verb referring to  an act  of giving by hand (concept type 
HAND-GIVE). 

Operations  on  conceptual  graphs 
The theory  of  conceptual  graphs  includes  a notation for 
knowledge representation and a set of standard operations 
on  that representation. The basic operations include 
operators  on  the  type hierarchy; the  four  formation rules of 
copy, restrict, join,  and simplify; and derived  formation 
rules, such  as  maximal join. These operations  are 
implemented  as  PLNLP  subroutines  that  are called by the 
more complex routines for  relational  expansion,  reducing 
universal quantifiers to primitive form,  and  anaphora 
resolution. Following are the basic operations: 

Lurrice  operators: The  three operators on  the type lattice 
are subrype 5, minimal  common superl-vpe U, and 
maximal  common subtype n. For  any two  type labels A 
and B, subtype returns true if A s B  and false otherwise. 
The maximal common subtype routine  returns a  pointer 
to  the type record for AnB.  The  minimal  common ' 

supertype routine  returns a pointer  to  the type record for 
AUB. Currently, these operators search the supertype and 
subtype pointers in the  type lattice. An encoding that 
permits faster searches will be implemented later. 
Conformily: For a type A and referent x, the conformity 
routine checks  whether x conforms  to A (written A::x). 
This  routine  returns  the values true, false, or permissible. 
For example, if Tom is known to be of  type MAN, it 
would return true for PERSON::Tom,jhl.w for 
WOMAN::Tom,  and permissible for 
PEDESTR1AN::Tom. 
C0p.v: The copy routine is a recursive procedure that 
traverses a  graph,  creating  a new node for each  concept 
and relation it encounters. It is more complex than a  tree 
copy because graph cycles must be considered and  the 
backwards pointers  maintained. 
Restrict: The restrict routine either replaces the type label 
of  a  concept with the label of a subtype or replaces a 
generic referent with an individual referent. The 
conformity  relation is checked to  ensure  that  the new 
referent is true or at least permissible for the new type 
label. 
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Join: A simple join creates  a single graph by merging two 
graphs on a single matching concept. Given graph A 
containing concept s and graph  B containing a matching 
concept y ,  then  the relation list for  concept .v is added to 
that of s and all of the pointers in graph  B that  point  to y 
are reset to  point  to x. Finally. Bs concept y is erased: all 
other concept and relation  nodes are retained in the 
combined graph. 
Simpl/fi,: The simplify routine checks each relation 
connected to  the newly joined concept in order  to 
eliminate any duplicates. Two relation nodes  are 
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considered  duplicates  when  both  have the  same relation 
type and  both have the  same  concepts  attached  to 
corresponding arcs. If a duplicate relation  node is found, it 
is deleted, and  the relation lists in the attached  concept 
nodes are adjusted. 
Maximal  join: A  maximal join is a sequence  of joins  and 
simplifications  applied to  the  matching nodes  of  two 
graphs. Once  the starting place for the maximal join is 
determined, a  simple join is performed on  the matching 
concepts.  Next, all the nodes  adjacent to  the  joined 
concept are checked to see if any of the relations from  one 
graph match those of the  other. If a  match is found,  then 
the procedure continues  around  the graph  locating 
matching concepts, restricting their types, joining  and 
simplifying until no  further  matches  are detected. 

Other  operations  on  conceptual graphs are relational 
expansion and contraction. Relational  expansion replaces a 
relation and its attached  concepts with the  expanded form of 
its  relational  definition. In  the section on  lambda 
abstractions,  a new relation QOH was defined. In the type 
node  for that relation, the  definition field points to the 
lambda record shown  in Fig. 7. The expansion  operation 
copies the  conceptual graph  designated by the  lambda 
record, joins  the  concepts  attached to the  QOH relation with 
the formal parameters of the  lambda record, and deletes the 
original QOH relation  record. Figure 13 shows that relation 
before and after  expansion. 

The relational contraction  operation, while not in itself 
difficult, requires  complex pattern  matching to determine 
which subgraph is a candidate  for  contraction. Since the 
contraction  operation is not  important for semantic 
interpretation, it  has not yet been implemented. 

of universal quantifiers into Peirce’s primitive  existential 
form.  This  operation is illustrated  for the sentence, Every 
farmer who owns a donkey beats it, whose conceptual graph 
was shown  in Fig. 8. The result  of expanding  the universal 

Another  operation  on  conceptual graphs is the expansion 

quantifier in that graph is shown  in Figure 14. The 
expansion  takes place according to the following steps (page 
numbers refer to  the book [I]) .  

1. Draw  a double negation around  the  entire graph  in Fig. 
8. This  step is always permitted by the rules  of  inference 
for conceptual graphs  (Assumption 4.3.5, p. 154). 

2 .  Expand the universal quantifier according to its  definition 
(Assumption 4.2.7, p. 146): 
a.  Make  a  copy  of the concept with the universal 

quantifier (the  one  that represents every farmer who 
owns a donkey), and place it between the  inner  and 
outer negative contexts. 

quantified  concept in the  inner  context to its  copy  in 
the enclosing  context. 

concept and its  copy. 

b. Draw a  coreference  link  from the universally 

c. Erase the universal quantifier  both on  the original 

3. By Theorem 4.3.7 (p. 158), any concept  type  in an evenly 
enclosed context may be generalized to a  supertype: The 
innermost  lambda abstraction  for  donkey-owning  farmers 
may be simplified to just  the type label FARMER. 

4. Since the universal quantifier  has been removed from  the 
outer copy,  it is possible to  expand  the  lambda 
abstraction by a maximal  type expansion  (Definition 
3.6.7, p. 109). 

After this  expansion  has  been done,  the  anaphora  can be 
resolved from the  innermost  context  outward to generate 
Fig.  14. This  method of resolving references follows the 
accessibility constraints of  discourse  representation  theory 
[ IO]. Such constraints  are  not always sufficient to  determine 
the correct  referent, and  semantic  and pragmatic constraints 
must also be used. Those constraints have not yet been 
implemented,  but  the  current system should  provide  a useful 
tool for exploring  various  techniques. 

Syntax-directed  generation of conceptual 
graphs 
The  semantic  interpreter starts with the parse  tree  produced 
by the  PLNLP English grammar. It determines  the  order of 
joining  canonical graphs associated with each input word. 
Three  attributes of the parse  records are especially important 
for  traversing the tree: the head, the premodifiers, and  the 
postmodifiers. The head attribute  points  to a record for the 
head of a phrase. The head is determined by purely syntactic 
criteria. The premodifier list has  a pointer to a record for 
each  premodifier, and  the postmodifier list has  a  pointer to a 
record for each postmodifier. 

The head,  premodifier, and postmodifier attributes do  not 
occur in the  terminal records  for the  input words, but they 
do occur in the records  for all other subtrees  of  a parse tree. 
Therefore, the  conceptual graph  for  a  sentence  can be 
generated by a recursive algorithm: If a  record  has no head 
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attribute,  then  the record is a terminal node, and  the 
canonical  graph for that word is returned; otherwise, the 
conceptual  graph is formed by a  maximal join of the graph 
for the head with the  conceptual graphs  of the premodifiers 
and postmodifiers. 

The starting  positions  for joins  are usually determined by 
syntactic  criteria. The following rule, for example, shows a 
verb  phrase VP formed from a  verb V with a  prepositional 
phrase PP as postmodifier: 

V P + V P P  

For  the canonical  graph  for V, the head is the concept 
associated with the verb. For  the canonical  graph for PP, the 
head is a  concept that represents the verb to be modified. 
For  the canonical  graph  for VP, the head is the result of 
joining  the heads  of the V and PP graphs. In general, 
syntactic  criteria determine  the starting points for joining  the 
main modifiers in English: adjectives  modifying nouns, 
adverbs  modifying verbs, and prepositional  phrases 
modifying either  nouns or verbs. Not all starting points  are 
defined so clearly, however. For  joining  the subject to  the 
main verb, the  interpreter tries  a list of preferences in 
Fillmore’s order,  AGNT, INST, OBJ [ I  I]. For  nouns 
modifying other nouns-one of the most ambiguous aspects 
of English-the program compares  the head  concept  of the 
modifier  graph with all the  concepts in the canonical  graph 
for the principal noun. If no  join is possible, then  the 
interpreter reports  a failure to  determine how the modifier 
and principal noun  are related. 

Consider the parse tree  in Fig. 1 for the sentence John 
went to Boston by bus. The  interpreter  starts by finding the 
canonical  graphs  for each terminal  node (word)  of the tree. 
To generate the graph for the first PP node,  it joins  the graph 
for the preposition to with the graph for Boston. The 
resulting graph is joined  to  the graph  for the main  head 
went. Next, the graph  for the preposition by is joined with 
the graph  for bus, and this  graph is joined with the 
previously joined graph  for went and  the first PP. Finally, the 
graph  for the premodifier John is joined  to generate the 
graph  for the  entire sentence. Generating a  conceptual  graph 
is not always so straightforward. Two basic kinds of 
ambiguities  may arise: 

Lexical  ambiguity: Words  may  have  multiple senses with 
different canonical graphs. The preposition to, for 
example, may indicate the destination (DEST) or recipient 
(RCPT), and by may indicate instrument (INST),  location 
(LOC), or agent (AGNT). 
Structural nmbiguity: The  point of attachment for  subtrees 
of the parse tree  may not be uniquely determined by the 
grammar. In the sentence John went to  the chair by  the 
window, the phrase by the window is a  postmodifier  for the 
chair, yet the first parsing shows it as  a  postmodifier  for 
the verb. 
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To  handle lexical ambiguities, the  semantic interpreter 
must  consider  multiple candidate graphs and pass them  up 
the parse tree  until one or more  are blocked by a failure to 
find an acceptable join. Therefore, at each level of the parse 
tree, there  may be a list of several graphs  for different 
interpretations of the lower branches. The program  tries to 
join each combination of graphs from the given lists by 
sending the maximal join procedure two graphs at a  time. 
The successful joins  are evaluated by counting  the  number 
of  concepts  in the resulting graphs. The graph with the 
smallest number of  concept  nodes is preferred, since that is 
the  one with the largest number of matching concepts (a 
maximal join).  The preference for maximal joins is similar 
to Wilks’s method of prejerence semantics [ 121. 

developed  a method of  moving  nodes  in the parse tree. The 
parser first generates exactly the  same  structure for John 
went to Boston b.v bus and John went to the chair b.v the 
window. To  support node moving, however, the parser keeps 
a list of other possible attachments for the modifiers. When 
joining graphs, the  semantic  interpreter would find that the 
window is not  an acceptable instrument for went. The node- 
moving technique would  try another  option of putting  the 
second PP in the postmodifier list for the chair. Then  the 
semantic interpreter  would find that the window is an 
acceptable  location for the chair and  join  the canonical 
graph  for by indicating the LOC relation. The  technique of 
generating  a single parse tree and adjusting  it by moving 
nodes is more efficient than generating all possible trees and 
throwing away ones  that violate the constraints. 

graphs to  determine  the  connections between the  input 
concepts. Schemata for  a  type are typically larger than  the 
canonical  graphs for that type: They  include  more 
background knowledge and a more extensive pattern of 
relationships. One of the extensions to be explored is the use 
of schemata  as  an  adjunct  to  the canonical  graphs  in 
semantic  interpretation.  There  are two possible ways of using 
them: 

To handle structural ambiguities, Heidorn  and Jensen [ 131 

The  interpreter described in this  paper uses only canonical 
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If an ambiguity cannot be resolved by canonical  graphs 
alone, try possible joins with schemata  and  take  the result 
that has the largest number of matching concepts. 

schema  that is applicable  could resolve many ambiguities 
at once.  Therefore,  it  might be more efficient to try joining 
schemata before or instead  of the simpler  canonical 
graphs. 

Since  a  schema  has  a large pattern of relationships, any 

Either of these approaches  could be implemented as an 
extension to  the  current interpreter. The basic algorithms 
would remain unchanged, and  the  only difference would be 
the use of schemata instead  of or in addition  to  the 
canonical graphs. But since the  number of schemata  may be 
much larger than  the  number of canonical  graphs, the 
efficient use of schemata requires an associative search or 
preference strategy for  finding the most likely candidates  to 
try. 

Other  implementations 
All implementations of conceptual graphs that  conform  to 
the formal  definition [ I ]  must,  at  the logical level, be 
isomorphic. Because of the  isomorphism, it is possible to 
write conversion routines  that  map  the  data  structures from 
one version to  another.  For example, output from the 
semantic  interpreter could be  sent  to a formatter  that 
displays the graphs as boxes and circles on a  screen, to a 
theorem prover that  does inferences  from them,  to a 
database system that stores and retrieves them,  or  to a 
language generator that translates them  into  some  other 
language (natural  or artificial). Even if those other systems 
used a different internal representation, they could express 
the  same  information  at a logical level. 

processors for conceptual graphs are being implemented  at 
several locations  in IBM and  at universities: 

Besides the  implementation described in  this paper, 

The KALIPSOS Project at  the IBM Paris Scientific Center 
is using conceptual graphs  for  a knowledge acquisition 
system [ 141. They are using Prolog to develop  a parser for 
French and  an inference  engine that processes Prolog-like 
rules with the predicates  represented as  conceptual graphs. 
They  have  also implemented a variety of  tools  for helping 
a knowledge engineer to analyze natural language text in 
order  to define the rules and facts of  a knowledge base. 
The Intelligent Help Project at  the IBM Los Angeles 
Scientific Center is developing  a computer help system 
based on conceptual graphs [ 151. They  have  been 
analyzing  typical  help  requests to  determine how they 
could be represented and processed with conceptual graphs 
and have developed a standard interchange notation for 
mapping  conceptual graphs  from one system to  another. 
Using that  notation, they have  developed  a processor for 
displaying the graphs on screens and  printers in the box 

68 and circle form as well as printing  them in the linear  form. 
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At the University  of Bristol, Morton  and Baldwin [ 161 
have used Prolog to  implement a conceptual graph 
processor with extensions to handle fuzzy referents. Their 
front-end parser handles elliptical queries, anaphoric 
references, user definitions, and meta-queries. The back- 
end  maps conceptual  graphs  generated by the parser into 
FRIL, a fuzzy relational  database query language. They are 
also using conceptual  graphs  to represent  spatial and 
graphic  relationships  for  a computer vision system. 

representing audit  information in conceptual graphs. They 
have  built  a knowledge acquisition facility that enables an 
expert to define  concept  types with associated  canonical 
graphs  for any application.  They also implemented  an 
inference  engine that  does frame-like  reasoning with 
conceptual graphs. Their English front-end just uses a 
simple template  pattern  matcher,  but they plan to replace 
it with a more general parser. 
At the IBM Japan Science Institute, Maruyama [ 181 has 
used Prolog to  implement actors  attached to conceptual 
graphs  (as described in [ I ] ,  Section 4.6). Starting with a 
query graph for a user’s question,  the system joins 
schemata  containing  attached actors. Control  marks on 
the graphs trigger the  actors  to access database  relations or 
do computations.  The result of satisfying the  control 
marks is the answer to  the original query. For answering 
typical database queries,  actors attached  to conceptual 
graphs appear  to be more efficient than a general inference 
engine. Maruyama has  also  written  a translator for 
mapping propositions  stated  as conceptual graphs into 
Prolog clauses. 
At the IBM Toronto Laboratory, the Machine-Readable 
Information Project  has implemented a parser and 
semantic  interpreter in Prolog [ 191. The  grammar was 
mapped  into Prolog from the context-free  rules  of the 
Linguistic String  Project [20]. But instead of using the LSP 
restriction rules, they let the  semantic  interpreter use 
canonical  graphs to check constraints  on  the parsing. They 
have also implemented a graphics editor for  defining and 
displaying conceptual graphs. 

At Deakin  University, Garner  and  Tsui [ 171 are 

Since Prolog supports different kinds of data  structures 
from  PLNLP  or LISP, the Prolog implementations  must use 
different encodings  for the  same logical information.  For  the 
sentence, Felix the cat is chasing a mouse, the  conceptual 
graph  in  linear  form  would be 

[CHASE]- 
(AGNT) ”+ [CAT: Felix] 
(OBJ) - [MOUSE]. 

One  method of  representing  such  a  graph is to assign a 
unique identifier to each  concept (cl, c2, and c3) and 
represent  each  relation by a predicate. That graph  could then 
be represented by  five Prolog assertions: 
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id(cl, cat.felix). agnt(c2,cl). 
id(c2, chase.’*’). obj(c2,c3). 
id(c3, mouse.’*’). 
An assertion like id(c2,chase.’*’) means  that c2 identifies a 
concept whose type label is CHASE and whose referent is * 
(a generic  concept). The assertion agnt(c2,cl)  means  that 
concept c2 has an agent  c 1 .  Yet  this  representation is too 
limited: All concepts  are  at  the  same level, and  there is no 
way to show the nesting of  contexts.  A more general 
representation is to show a conceptual graph  as  a list of 
concepts with unique identifiers followed by a list of 
relations: 

cg((cl.cat.felix).(c2.chase.’*’).(c3.mouse.’*’).nil, 
(agnt.c2.~1).(obj.~2.c3).nil). 

The dyadic  function cg identifies the concept and relation 
lists of  a conceptual graph. This  structure could then be 
nested inside the referent of  a  concept of type 
PROPOSITION  (a context). For graph traversals, character 
string identifiers like cl  and  c2  are less efficient than  the 
direct  pointers  in PLNLP  (and its  underlying LISP system). 
But the backtracking and unification  algorithms  in Prolog 
may simplify other operations. In any case, the various 
processors implemented in  both languages are  quite fast, 
even though they are still experimental tools. 
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