
Implementing a by John F. Sowa
Eileen C. Way

semantic
interpreter using
conceptual
graphs

A parser applies grammar rules to generate a
parse tree that shows the syntactic structure of
a sentence. This paper describes a semantic
interpreter that starts with a parse tree and
generates conceptual graphs that represent the
meaning of the sentence. To generate
conceptual graphs, the interpreter joins
canonical graphs associated with each word of
input. The result is a larger graph that
represents the entire sentence. During the
interpretation, the parse tree serves as a guide
to show how the graphs are joined. Both the
front-end parser and the back-end semantic
interpreter are written in the Programming
Language for Natural Language Processing
(PLNLP).

Introduction
When people understand language, they bring to bear a great
deal of background knowledge. That knowledge can be
organized into four basic categories:

0 Lexical: Information about word forms.

"Copyright 1986 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (I) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor. 57

IBM 1. RES. DEVELOP. VOL. 30 NO. I JANUARY 1986 JOHN F. SOWA AND EILEEN C . WAY

Syntactic: Information about word and phrase categories
and their ordering in sentences.
Semanlic: Word definitions, constraints on the use of
words in well-formed sentences, and background
information about defaults and expectations.
Episodic: Assertions about particular things and events.

Lexical and syntactic information is the easiest to represent
and process in a parser. But it is not sufficient to resolve all
the ambiguities in natural language; and by its nature, it
cannot determine what a sentence means. Semantic
information is typically listed in dictionaries, and episodic
information is presented in histories, biographies,
newspapers, and encyclopedias. Conceptual graphs [11 are
used to represent both semantic and episodic information.
This paper shows how a semantic interpreter can generate
them from a conventional parse tree.

The parser used in this project is the PLNLP English
parser developed by Jensen and Heidorn [2]. It uses a
machine-readable dictionary of over 70000 words with a
grammar that is complete enough to handle almost any
English sentence. By a technique of j t ted parsing, it can
even handle ungrammatical sentences, fragments of
sentences, and irregularly formed lists and phrases. Yet the
parser uses only syntactic rules to generate parse trees. The
semantic interpreter translates those trees into conceptual
graphs by the following steps:

For each word of input, it accesses a lexicon of canonical
graphs, which represent the default ways that concepts and
relations are linked together in well-formed sentences.

The interpretation of a complete sentence is formed by
joining the small canonical graphs associated with each
word to form a large graph that represents the entire
sentence.
The parse trees guide the semantic interpreter by
determining the order of doing joins.
Semantics helps to resolve syntactic ambiguities by
rejecting parse trees for which the joins are blocked.

To illustrate this approach, consider the sentence John
went to Boston by bus. Figure 1 shows a parse tree generated
by the PLNLP English parser for this sentence. DECL
indicates that this is a declarative sentence, and the asterisks
show the head constituents of each phrase and subphrase.
The internal PLNLP records actually contain more detail
than Fig. 1 shows: They indicate the past tense of went, the
singular forms of John, Boston, and bus, and other syntactic
and morphological features.

The semantic interpreter generates the conceptual graph
in Figure 2 from the parse tree in Fig. 1. The boxes represent
concepts, and the circles represent conceptual relations.
Every concept implicitly asserts the existence of something
of the corresponding type: This graph asserts the existence of
John, a bus, an instance of going, and the city of Boston in
the role of place. It further asserts that John is the agent of
going, a bus is the instrument, and Boston is the destination
of going. To represent the past occurrence of this situation,
the monadic relation PAST is attached to a context that
encloses the entire graph. To save space on the printed page, 58

JOHN F. SOWA AND EILEEN C. WAY

Fig. 2 can also be written in the linear form with square
brackets to represent concepts and rounded parentheses to
represent conceptual relations:

(PAST) + [[GO]-
(AGNT) -+ [PERSON: John]
(DEST) -+ [CITY-PLACE: Boston]
(INST) + [BUS]].

Besides mapping parse trees to conceptual graphs, the
semantic interpreter also checks constraints on well-formed
sentences. For the anomalous sentence, Boston went to birds
by spaghetti, the PLNLP parser does not check any
constraints and generates a tree of exactly the same shape as
Fig. 1. The semantic interpreter, however, would reject that
sentence because the canonical graph for GO requires a
MOBILE-ENTITY as agent and a PLACE as destination.
This method of allowing the parser to accept anomalous
sentences and rejecting them in the semantic stage is fairly
common. It contrasts with two other common approaches:

Detailed syntactic parsing: Some parsers require very
detailed syntactic features for every word in the lexicon.
By using syntactic rules to check the features, they can rule
out the possibility of Boston as the subject of went.
Conceptual parsing: Schankian-style parsers [3,4]
minimize the role of syntax and use the conceptual
representation as a guide to selecting words from the input
sentence. Some of these parsers may actually ovemde
word order and force birds to be the agent and Boston the
destination of went.

Splitting the parser and the interpreter simplifies both, while
making them more general and easily extendible. Since the
PLNLP English parser uses simple features, it can take
advantage of conventional machine-readable dictionaries.
More detailed parsers, however, require highly complex,
specially encoded lexicons; none of them have the range of
coverage of the PLNLP parser. Although the semantic
interpreter requires a specially encoded lexicon of canonical
graphs, they are purely declarative graphs that are easier to
generalize than the more procedural code in the Schankian
parsers. With a different collection of graphs, the semantic
interpreter can be adapted to different domains without any
change to the underlying procedures.

Metaphor is another reason for separating the parser and
the semantic interpreter. Consider the sentence, Boston went
to the dogs. Although it is semantically anomalous, it has a
metaphorical interpretation that Boston deteriorated in some
way. A detailed syntactic parser would reject that sentence
completely. A conceptual parser might misinterpret it as
meaning that the dogs went to Boston. Yet the PLNLP
parser would handle it correctly. After the semantic
interpreter failed to generate a conceptual graph for it, the
parse tree could be passed to a metaphor interpreter.
Although a metaphor interpreter has not yet been written for

IBM 1. I; IES. DEVELOP, \‘OL. 30 NO, I J ANUARY 1986

59

IBM J. RES. DEVELOP. VOL. 30 NO. I JANUARY 1986 JOHN F. SOWA AND EILEEN C. WAY

this project, this approach allows one to be added as an
extension to the normal processing.

Logical level
Conceptual graphs are formally defined, with theorems and
proofs that demonstrate the relationships between various
aspects. There are two major aspects of the theory that must
be considered:

Propositions: The meaning of a declarative sentence is a
proposition. For questions, the meaning is a proposition
whose truth is to be determined. For commands, the
meaning is a proposition stating the result to be achieved.
To handle any of these cases, the semantic interpreter
must generate a conceptual graph that states a logical
proposition.
Semantic network: The background knowledge needed to
interpret sentences is more general than any particular
sentence. It is organized as a hierarchy of concept types
together with their definitions, the constraints on
combining them, and the associated defaults and
expectations.

The graph for John went to Boston by bus is an example of
episodic information that asserts a particular proposition. To
generate the graph that states that proposition (Fig. 2), the
semantic interpreter joins other graphs taken from the
semantic network. Conceptual graphs therefore serve two
purposes: They may be used by themselves to state
propositions; but when stored in the semantic network, they
serve as templates or patterns that may be used to generate
other graphs.

Before the operations on conceptual graphs can be
implemented, each formal object in the theory must be
mapped into an appropriate data structure. Following are
the basic objects to be represented:

Concepts with type labels and referents.
Conceptual relations with type labels and arcs.
Conceptual graphs, which are interlinked concepts and

Contexts, which are concepts of type PROPOSITION.
They support a nesting of conceptual graphs to express
negations, modality, and propositional attitudes.
Lambda abstractions, which are conceptual graphs with
one or more concepts designated as formal parameters.
A lexicon for mapping word forms to their syntactic
categories and concept types. (In the book [I], the lexicon
is not formally defined, but it is informally represented by
the lists in Appendix B.)

relations.

Other objects in the theory are specialized uses of these:
A canonical graph is simply a conceptual graph that is
associated with a concept or relation type; a type definition

is a lambda abstraction associated with a type label; and a
schema is also a lambda abstraction, but it is used for
background information instead of definition.

The semantic network is a repository of general
information about some domain of discourse. It must be
defined before the semantic interpreter can begin to analyze
sentences. During a dialog, the interpreter builds conceptual
graphs for new episodic information by using the semantic
information as a basis. For every type of concept and
relation, there is a node in the semantic network with the
following associated information:

Type label: Each type of concept or relation is identified
by an uppercase character string, called its type label:
CITY and GO represent types of concepts; AGNT and
DEST represent types of relations.

primitives that cannot be defined. Others are defined by
lambda abstractions.
Canonical graph: Every concept and relation type has a
conceptual graph that specifies the constraints on the
pattern of concepts and relations that may be linked to it.
That graph is called its canonical graph.
Schema: A concept type may have one or more schemata
that specify defaults, expectations, and other background
knowledge. Although there is only one canonical graph for
each type, there is no limit to the number of associated
schemata.

Type dejnition: Some concept and relation types are

Canonical graphs show the external pattern of relationships
that must be attached to concepts of a given type. They are
primarily used in parsing input sentences. Type definitions
show the internal pattern of relationships that define a type.
They are used in drawing inferences from the input.
Schemata may be used for parsing in the same way as
canonical graphs, but they are also used for plausible and
default reasoning.

The subtype and supertype relations between concept
types define a lattice. The pointers that represent the lattice
link the types to form the semantic network. Four basic
operators are defined on those types:

Subtype: The operator s defines a partial ordering of
concept types: PERSONSANIMAL; BUSSMOBILE-
ENTITY; GOsMOVE.
Minimal common supertype: For any types A and B, the
type AUB is the lowest one in the lattice that is above both
A and B: PERSON U STONE = ENTITY.
Maximal common subtype: For any types A and B, the
type AnB is the highest one in the lattice that is below
both A and B: CITY r l PLACE = CITY-PLACE.
Conformity: The operator :: tests whether an individual
conforms to a type: C1TY::Boston.

These operators are defined theoretically in [I] . In the
implementation, they must be defined by procedures that
follow pointers up and down the lattice. Other procedures
must be implemented for the canonical formation rules of
copy, restrict, join, and simplify. The derived formation rule
of maximal join is a combination of the simpler rules that is
heavily used by the semantic interpreter. The remainder of
this paper shows how the formal objects are mapped into
data structures and the formal operators are mapped into
procedures.

Implementation level
As a formally defined system, the theory of conceptual
graphs could be implemented in LISP, Prolog, or any other
programming language. This paper describes a particular
implementation in the Programming Language for Natural
Language Processing (PLNLP) [5, 61. PLNLP has facilities
for parsing text, generating text, and processing graphs.
There were several reasons for choosing it as the
implementation language for this project:

It has a built-in, bottom-up parallel parser, driven by
augmented phrase structure grammar rules (APSG).
The PLNLP English grammar written by Karen Jensen is
one of the broadest coverage grammars available for any
natural language.

represent graphs, and the language has a powerful set of
operators for building and traversing graphs.

The PLNLP data structures are specially designed to

The basic data structure of PLNLP is the record. Each
record consists of a collection of named attributes with
associated values. The values may be simple atoms, or they
may be pointers to other records. For a conceptual graph,
each node (concept or relation) is represented by a single
record. Altogether, eight different kinds of records are used
in this implementation:

Concept records represent the concept nodes (boxes) in a
conceptual graph.
Relation records represent the relation nodes (circles) in a
conceptual graph.
Context records are special cases of concept records whose
type is PROPOSITION, but two additional fields are
added to speed up certain operations.
Concept type records are the central directories for
semantic information about a concept type. Type and
subtype pointers link these records to form the semantic
network.
Relation type records specify semantic information about
a conceptual relation type. They are similar to, but slightly
different from, the concept type records.
Lambda records identify the formal parameters of lambda
abstractions, which are used in definitions and schemata.

Lexical records form a dictionary of word forms. Each
lexical record contains a list of pointers to word-sense
records.
Word-sense records specify the syntax and semantics for
each sense of a word. The semantics is determined by
pointers to type records and canonical graphs in the
semantic network.

The first attribute of each record is a tag that specifies one of
these eight kinds of records. The other attributes a record
may have are determined by this tag.

programming problems that occur in natural language
processing. PLNLP procedures can be written either as
pattern/action production rules or as more traditional
sequential programs. A combination of these two forms is
used to implement the semantic interpreter algorithms.
PLNLP operators support easy record creation, copying, and
manipulation. When a new name is encountered in a rule or
program statement, that name is automatically defined as a
new record attribute. These features result in programs that
are shorter and more understandable than LISP code for the
same kinds of tasks. Since PLNLP is compiled into LISP, its
performance on equivalent operations is the same.

PLNLP is a high-level language designed for the kinds of

Concepts and relations
Conceptual graphs represent propositions. They may assert
episodic information about particular individuals, or they
may express general principles in the semantic network. Any
representation must satisfy the following constraints:

Connectivity: The algorithms for language parsing,
generation, and reasoning depend on the ability to start
from any concept and traverse the entire graph. The
implementation must support some form of forward and
backward pointers linking all the nodes.
Generality: Although most primitive conceptual relations
are dyadic, the formalism allows relations with any
number of arcs. Furthermore, any concept may have any
number of relations attached to it, and the number may
increase as more assertions are made. The implementation
must support all these options.
No privileged nodes: Any concept in a conceptual graph
may be treated as the head. The choice of concept to
express as a subject or predicate depends on focus and
emphasis, but the representation should not presuppose
one choice of root or head (as trees and frames typically
do).
Canonical formation rules: The four rules of copy, restrict,
join, and simplify are used throughout the system in
reasoning and parsing. The implementation must make
these operations fast and simple.

Two different record representations were considered for
this implementation of conceptual graphs. The first

JOHN F. SOWA A I N D EILEEN C. WAY IBM J . RES. I IEVELOP. \ {OL. 30 NO. I JANUARY 1986

representation uses separate records for relations and
concepts, while the second treats relations as attributes of
concept records. The first representation takes more storage
space, but it supports greater independence between
concepts and relations. The second representation saves
some space and may allow a more rapid graph traversal, but
it increases the complexity of the record fields and creates
difficulties in dealing with relational contraction and
expansion. Both representations have merit. The first
representation was chosen because it has greater flexibility
and simplifies operations on the graphs.

records and relation records. These represent individual
occurrences or tokens of the concept and relation types. A
concept record contains the following attributes:

0 A lagfield, indicating that the record is a concept record.
0 A typefield, which points to a concept type record.
0 A referentjeld, which specifies the referent for individual

A relation list, which points to every relation record whose

The nodes in conceptual graphs are represented by concept

concepts or a quantifier for generic concepts.

arcs are linked to the current concept.

The referent field of a concept may contain any of the
following values:

A generic marker, represented by the * symbol. This
marker represents an unspecified individual of the given
type.
An individual marker, represented by # followed by an
integer identification number.
A set referent, represented by a list of individual markers.
A generic set, represented by the symbol I*). This indicates
that the referent of the concept is a set of zero or more
unspecified elements.
A quantifier, represented by a special symbol, such as V.
This symbol is not one of the primitive forms, but it can
be expanded into the primitive forms by the operations
defined on conceptual graphs.
A definite reference, represented by # without a trailing
integer. This represents an anaphoric reference to be
resolved by a coreference link to some other concept.
A measure of some quantity, represented by the marker @.

For example, in the concept [SPEED: @55mph], the
marker @ shows that 55mph is a measure of the speed, not
its name or individual marker.
A coreference link, which connects the current concept to
a concept in a dominating context that has the same
referent.

it, the resulting conceptual graphs may be traversed in any
direction.

In Fig. 2 , the conceptual graph for John went to Boston by
bus is nested inside a context that is marked as past. Since
context nodes are not discussed until the next section, Figure
3 shows only the records for the tenseless graph that is nested
inside the context.

Contexts
C. S. Peirce [7] introduced contexts in his existential graphs
as a means of grouping propositions. He used them to
represent negation, modality, and propositional attitudes.
The contexts in conceptual graphs follow Peirce directly, but
they are also similar to proposition nodes [8] and partitions
[9] in other AI systems. A context record is a special case of a
concept record of type PROPOSITION. The referent field of
a context record contains a list of pointers, each indicating
the head of one of the conceptual graphs asserted by that
proposition.

find all the relevant information about a context, and no
other fields are needed in a context record. For efficiency,

Logically, the pointers in the referent field are sufficient to

Relation records contain a tag field, a type field, and a however, two other fields are added:
pointer for each arc. Since every relation record has a
pointer to each of the concept records linked to it and each 0 The catalog ofindividuals is a list of pointers to all the
concept record has a list of pointers to the relations linked to concepts that are existentially quantified in the current

IBM J. RES. DEVELOP. C ‘OL. 30 NO. I JANUARY 1986 JOHN F. SOWA AND EILEEN C. WAY

’~~~~~~~~~~~~ occurrence of [HOUSE: #] to the outer one. Actions and
~~~~~~~~~~~~~~~~~~ & states, such  as thinking  and believing, are treated  as 

indefinite references, unless they are described by gerunds 
with a  definite  article,  such  as the thinking or the believing. 
As a result of  interpreting this sentence, the system 
constructs  three nested contexts with the following catalog  of 
individuals: 

The  outermost  context has five individuals: Sam, Ivan,  a 
house, Sam’s thinking, and a  proposition that  Sam  thinks. 
Sam’s thought is a  context with three new individuals:  a 
kitchen, Ivan’s believing, and a  proposition that Ivan 
believes. 
Ivan’s belief is another  context with one new individual:  a 
cat. 

expanded into record form. 

context. This catalog  includes concepts of all types: Besides Lambda abstractions 
things,  it  includes  events,  attributes, and propositions A lambda abstraction is a conceptual graph with one or 
(nested  contexts). more generic  concepts  identified as formal  parameters. 
The environment link is a pointer  to  the  context in which Lambda  abstractions have  multiple uses in the theory: 
the  current  one is nested. 

Definitions: Monadic  abstractions  are used to define 
The nesting of contexts is analogous to  the nesting of concept types, and n-adic abstractions  are used to define 
procedures and begin-end blocks  in  ALGOL-like languages. n-adic relation types. 

JOHN F. SOWA AND EILEEN C. WAY IBM J.  RES. DEVELOP. VOL. 30 NO. I JANUARY 1986 



Single-use types: Instead  of  a permanently defined type 
label, the type field of a  concept may contain a lambda 
abstraction that is created for a single use. These lambda 
abstractions are  commonly created for restrictive relative 
clauses. 
Schemata: Like type  definitions, schemata  are  lambda 
abstractions. Unlike type definitions, which specify 
necessary and sufficient conditions, schemata specify 
defaults and expectations.  They are similar  in  structure, 
but different in use. 
Aggregations: New individuals may be defined as 
aggregations of  parts.  These aggregations are typically 
constructed by specializing the  concepts of  a lambda 
abstraction. 
Prototypes: A typical individual  may be represented by a 
prototype. It has the  same  structure  as  an aggregation, but 
with average or default values rather than particular 
values. 

To continue  the analogy with ALGOL-like languages, a 
context is like a begin-end block, and a lambda abstraction is 
like a procedure header. 

Implementing  lambda abstractions  requires  a new kind  of 
record, the lambda record. It has the following fields: 

A tagfield, indicating that  the record is a lambda record. 
A parameter  count, which specifies the  number of  formal 

A pointer for  each  formal parameter  to  some generic 
parameters. 

concept  of the conceptual  graph that serves as  the body of 
the  lambda abstraction. 

A lambda abstraction can be used to define the relation 
quanfity on hand, with a type label QOH. A  database system 
that has  repeated references to  part  numbers  and  the 
quantity of the  items in stock  may use a  relation QOH 
defined by the abstraction  in Figure 6. 

the body  of the  lambda abstraction. The  concepts tagged 
with the variables x and y are  the formal  parameters. The 
relation QOH has  two arcs. Its  type  node  has  a  definition 
attribute  pointing  to a lambda record, whose record 
representation is shown  in Figure 7. 

beats  it. The restrictive relative clause who owns a donkey 
indicates that  the quantifier every ranges over the donkey- 
owning  farmers. One way to show that is to define a special 
type DONKEY-FARMER in the  semantic network. 
However, it  would be wasteful to  clutter  up  the type 
hierarchy with a special type for every such clause. 
Therefore,  a single-use lambda abstraction may be defined 
for  this clause. Figure 8 shows that this lambda abstraction is 
placed in the  type field of the quantified  concept. In the 
record representation, the  type field would point  to  the 

The  conceptual graph  in the relational  definition serves as 

Consider the sentence, Everyfarmer who owns a donkey 

F Record representation of the lambda node for QOH 

3 Single-use lambda abstraction for a relative clause 

lambda record instead  of  a  type record in the  semantic 
network. 

Figure 8 does  not show that  the concept [ENTITY:#], 
which arises from the  pronoun it, is coreferent with the 
concept [DONKEY]. Resolution of anaphora proceeds from 
inside out: A coreference  link  may  only be drawn  from  a 
concept with # in its referent field to  another concept  in the 
same  context or a dominating (enclosing)  context. Before the 
anaphora can be resolved, the universal quantifier V must be 
expanded into  the primitive Peirce form.  This expansion is 
discussed in the section on operations. 

Semantic network 
The  semantic network is represented by a collection of type 
records for concepts  and relations  together with the 

IBM J.  RES. DEVELOP. VOL. 30 NO, I JANUARY 1986 JOHN F SOWA AND EILEEN C. WAY 



canonical  graphs  for  each  type.  Subtype and supertype 
pointers  in  the  concept type  records  represent the  type 
lattice. A concept type record has  the following fields: 

A tugfield, indicating  a  concept  type record. 
A type label, containing a character string that identifies 

A dejnitionfield, which can  either be nil or point  to a 

A canoniculgruph pointer, which points  to  the head of the 

the concept type. 

lambda record for  a monadic  lambda abstraction. 

associated canonical graph. 

A supertype pointer list, which points  to all the supertype 
records  for the given type. 
A subtype pointer list, which points  to all the subtype 
records for the given type. 
A schema pointer list, which points  to  the  lambda records 
of all the  schemata associated with the given type. 

An additional field  will be added for prototypes, but they are 
not yet implemented. Figure 9 shows a canonical graph for 
the concept  type GO. This graph  shows that a MOBILE- 
ENTITY is the agent  of GO and  that  some PLACE is the 
destination. 

Figure 10 shows the type record for GO with the record 
form of the canonical  graph. This diagram  shows explicit 
pointers from each concept and relation record to  the type 
records. Note  that  the box and circle notation shows the type 
labels written  inside the nodes. In the record form, the 
character  string  form  of the type label is written  only in the 
type  record. Both representations are consistent with the 
formal  definition, which only says that  there  must be a 
function type(c) that  maps a  concept c into a  type label. 
That  function  may be supported  either by a label in the 
record or by a pointer  to  some  other record that has the 
actual label. For efficiency, a pointer is better in the 
computer  implementation: To use the  character form to 
locate the type record would  require an associative search or 
a hash-coded table. Since humans  are  better  at associative 
searches than  at tracing  lines on complex  diagrams, type 
labels are better in diagrams designed for people. 

therefore,  they  have no supertype and subtype  pointer lists. 
Instead,  relation  type  records  have an arc countjield, which 
indicates  how many arcs are linked to relations of that type. 
Otherwise, the type record for  a  relation is similar to  that of 
a concept;  both  type records  have  a tag field, a  type label 
field, a  canonical  graph  pointer, and a  definition field. If the 
relation is primitive, then  the definition field is nil; but if a 
new relation type  has been defined, then  the definition field 
points  to a lambda record. A type record for the primitive 
relation AGNT is shown  in Figure 11 .  

Relation  type  records are  not linked  in  a  hierarchy; 

Lexicon 
The lexicon maps word forms to syntactic categories and 
concept types. For each word in the lexicon, there is a lexical 
record that  contains a tag field, the word form,  and a list of 
pointers for each word sense. Since each word sense may 
have  a different syntactic category, the word sense record 
must have four fields: 

A tag field, indicating that it is a word sense record. 
A syntax field, specifying the syntactic category for the 

A type field, pointing to  the concept  type record for the 
word sense. 

particular word sense. 

JOHN F. SOWA AND EILEEN C. WAY IBM J .  RES. DEVELOP. VOL. 30 NO. I JANUARY 1986 



A head field, pointing to  the concept of the canonical 
graph for the associated type that serves as  head when the 
concept is expressed by a word of the specified syntactic 
category. The head  concept of a  canonical  graph is the 
starting point for doing  joins,  but  the  same graph may 
have different heads when considered from different 
viewpoints. 

Figure 12 shows the lexical record for hand with word sense 
records for two different senses. The first word sense record 
corresponds  to  the use of hand as  a noun referring to  the 
body  part (concept type HAND);  the second to its use as  a 
verb referring to  an act  of giving by hand (concept type 
HAND-GIVE). 

Operations  on  conceptual  graphs 
The theory  of  conceptual  graphs  includes  a notation for 
knowledge representation and a set of standard operations 
on  that representation. The basic operations include 
operators  on  the  type hierarchy; the  four  formation rules of 
copy, restrict, join,  and simplify; and derived  formation 
rules, such  as  maximal join. These operations  are 
implemented  as  PLNLP  subroutines  that  are called by the 
more complex routines for  relational  expansion,  reducing 
universal quantifiers to primitive form,  and  anaphora 
resolution. Following are the basic operations: 

Lurrice  operators: The  three operators on  the type lattice 
are subrype 5, minimal  common superl-vpe U, and 
maximal  common subtype n. For  any two  type labels A 
and B, subtype returns true if A s B  and false otherwise. 
The maximal common subtype routine  returns a  pointer 
to  the type record for AnB.  The  minimal  common ' 

supertype routine  returns a pointer  to  the type record for 
AUB. Currently, these operators search the supertype and 
subtype pointers in the  type lattice. An encoding that 
permits faster searches will be implemented later. 
Conformily: For a type A and referent x, the conformity 
routine checks  whether x conforms  to A (written A::x). 
This  routine  returns  the values true, false, or permissible. 
For example, if Tom is known to be of  type MAN, it 
would return true for PERSON::Tom,jhl.w for 
WOMAN::Tom,  and permissible for 
PEDESTR1AN::Tom. 
C0p.v: The copy routine is a recursive procedure that 
traverses a  graph,  creating  a new node for each  concept 
and relation it encounters. It is more complex than a  tree 
copy because graph cycles must be considered and  the 
backwards pointers  maintained. 
Restrict: The restrict routine either replaces the type label 
of  a  concept with the label of a subtype or replaces a 
generic referent with an individual referent. The 
conformity  relation is checked to  ensure  that  the new 
referent is true or at least permissible for the new type 
label. 

IBM J .  RES. DEVELOP. VOL. 30 NO. I JANUARY 1986 

Join: A simple join creates  a single graph by merging two 
graphs on a single matching concept. Given graph A 
containing concept s and graph  B containing a matching 
concept y ,  then  the relation list for  concept .v is added to 
that of s and all of the pointers in graph  B that  point  to y 
are reset to  point  to x. Finally. Bs concept y is erased: all 
other concept and relation  nodes are retained in the 
combined graph. 
Simpl/fi,: The simplify routine checks each relation 
connected to  the newly joined concept in order  to 
eliminate any duplicates. Two relation nodes  are 

JOHN F SOWA AND EILEEN C. WAY 



considered  duplicates  when  both  have the  same relation 
type and  both have the  same  concepts  attached  to 
corresponding arcs. If a duplicate relation  node is found, it 
is deleted, and  the relation lists in the attached  concept 
nodes are adjusted. 
Maximal  join: A  maximal join is a sequence  of joins  and 
simplifications  applied to  the  matching nodes  of  two 
graphs. Once  the starting place for the maximal join is 
determined, a  simple join is performed on  the matching 
concepts.  Next, all the nodes  adjacent to  the  joined 
concept are checked to see if any of the relations from  one 
graph match those of the  other. If a  match is found,  then 
the procedure continues  around  the graph  locating 
matching concepts, restricting their types, joining  and 
simplifying until no  further  matches  are detected. 

Other  operations  on  conceptual graphs are relational 
expansion and contraction. Relational  expansion replaces a 
relation and its attached  concepts with the  expanded form of 
its  relational  definition. In  the section on  lambda 
abstractions,  a new relation QOH was defined. In the type 
node  for that relation, the  definition field points to the 
lambda record shown  in Fig. 7. The expansion  operation 
copies the  conceptual graph  designated by the  lambda 
record, joins  the  concepts  attached to the  QOH relation with 
the formal parameters of the  lambda record, and deletes the 
original QOH relation  record. Figure 13 shows that relation 
before and after  expansion. 

The relational contraction  operation, while not in itself 
difficult, requires  complex pattern  matching to determine 
which subgraph is a candidate  for  contraction. Since the 
contraction  operation is not  important for semantic 
interpretation, it  has not yet been implemented. 

of universal quantifiers into Peirce’s primitive  existential 
form.  This  operation is illustrated  for the sentence, Every 
farmer who owns a donkey beats it, whose conceptual graph 
was shown  in Fig. 8. The result  of expanding  the universal 

Another  operation  on  conceptual graphs is the expansion 

quantifier in that graph is shown  in Figure 14. The 
expansion  takes place according to the following steps (page 
numbers refer to  the book [I]) .  

1. Draw  a double negation around  the  entire graph  in Fig. 
8. This  step is always permitted by the rules  of  inference 
for conceptual graphs  (Assumption 4.3.5, p. 154). 

2 .  Expand the universal quantifier according to its  definition 
(Assumption 4.2.7, p. 146): 
a.  Make  a  copy  of the concept with the universal 

quantifier (the  one  that represents every farmer who 
owns a donkey), and place it between the  inner  and 
outer negative contexts. 

quantified  concept in the  inner  context to its  copy  in 
the enclosing  context. 

concept and its  copy. 

b. Draw a  coreference  link  from the universally 

c. Erase the universal quantifier  both on  the original 

3. By Theorem 4.3.7 (p. 158), any concept  type  in an evenly 
enclosed context may be generalized to a  supertype: The 
innermost  lambda abstraction  for  donkey-owning  farmers 
may be simplified to just  the type label FARMER. 

4. Since the universal quantifier  has been removed from  the 
outer copy,  it is possible to  expand  the  lambda 
abstraction by a maximal  type expansion  (Definition 
3.6.7, p. 109). 

After this  expansion  has  been done,  the  anaphora  can be 
resolved from the  innermost  context  outward to generate 
Fig.  14. This  method of resolving references follows the 
accessibility constraints of  discourse  representation  theory 
[ IO]. Such constraints  are  not always sufficient to  determine 
the correct  referent, and  semantic  and pragmatic constraints 
must also be used. Those constraints have not yet been 
implemented,  but  the  current system should  provide  a useful 
tool for exploring  various  techniques. 

Syntax-directed  generation of conceptual 
graphs 
The  semantic  interpreter starts with the parse  tree  produced 
by the  PLNLP English grammar. It determines  the  order of 
joining  canonical graphs associated with each input word. 
Three  attributes of the parse  records are especially important 
for  traversing the tree: the head, the premodifiers, and  the 
postmodifiers. The head attribute  points  to a record for the 
head of a phrase. The head is determined by purely syntactic 
criteria. The premodifier list has  a pointer to a record for 
each  premodifier, and  the postmodifier list has  a  pointer to a 
record for each postmodifier. 

The head,  premodifier, and postmodifier attributes do  not 
occur in the  terminal records  for the  input words, but they 
do occur in the records  for all other subtrees  of  a parse tree. 
Therefore, the  conceptual graph  for  a  sentence  can be 
generated by a recursive algorithm: If a  record  has no head 

JOHN F. SOWA AND EILEEN C.  WAY IBM I. RES. DEVELOP. VOL. 30 NO. I JANUARY 1986 



attribute,  then  the record is a terminal node, and  the 
canonical  graph for that word is returned; otherwise, the 
conceptual  graph is formed by a  maximal join of the graph 
for the head with the  conceptual graphs  of the premodifiers 
and postmodifiers. 

The starting  positions  for joins  are usually determined by 
syntactic  criteria. The following rule, for example, shows a 
verb  phrase VP formed from a  verb V with a  prepositional 
phrase PP as postmodifier: 

V P + V P P  

For  the canonical  graph  for V, the head is the concept 
associated with the verb. For  the canonical  graph for PP, the 
head is a  concept that represents the verb to be modified. 
For  the canonical  graph  for VP, the head is the result of 
joining  the heads  of the V and PP graphs. In general, 
syntactic  criteria determine  the starting points for joining  the 
main modifiers in English: adjectives  modifying nouns, 
adverbs  modifying verbs, and prepositional  phrases 
modifying either  nouns or verbs. Not all starting points  are 
defined so clearly, however. For  joining  the subject to  the 
main verb, the  interpreter tries  a list of preferences in 
Fillmore’s order,  AGNT, INST, OBJ [ I  I]. For  nouns 
modifying other nouns-one of the most ambiguous aspects 
of English-the program compares  the head  concept  of the 
modifier  graph with all the  concepts in the canonical  graph 
for the principal noun. If no  join is possible, then  the 
interpreter reports  a failure to  determine how the modifier 
and principal noun  are related. 

Consider the parse tree  in Fig. 1 for the sentence John 
went to Boston by bus. The  interpreter  starts by finding the 
canonical  graphs  for each terminal  node (word)  of the tree. 
To generate the graph for the first PP node,  it joins  the graph 
for the preposition to with the graph for Boston. The 
resulting graph is joined  to  the graph  for the main  head 
went. Next, the graph  for the preposition by is joined with 
the graph  for bus, and this  graph is joined with the 
previously joined graph  for went and  the first PP. Finally, the 
graph  for the premodifier John is joined  to generate the 
graph  for the  entire sentence. Generating a  conceptual  graph 
is not always so straightforward. Two basic kinds of 
ambiguities  may arise: 

Lexical  ambiguity: Words  may  have  multiple senses with 
different canonical graphs. The preposition to, for 
example, may indicate the destination (DEST) or recipient 
(RCPT), and by may indicate instrument (INST),  location 
(LOC), or agent (AGNT). 
Structural nmbiguity: The  point of attachment for  subtrees 
of the parse tree  may not be uniquely determined by the 
grammar. In the sentence John went to  the chair by  the 
window, the phrase by the window is a  postmodifier  for the 
chair, yet the first parsing shows it as  a  postmodifier  for 
the verb. 

IBM J .  RES, DEVELOP. VOL. 30 NO. I JANUARY 1986 

To  handle lexical ambiguities, the  semantic interpreter 
must  consider  multiple candidate graphs and pass them  up 
the parse tree  until one or more  are blocked by a failure to 
find an acceptable join. Therefore, at each level of the parse 
tree, there  may be a list of several graphs  for different 
interpretations of the lower branches. The program  tries to 
join each combination of graphs from the given lists by 
sending the maximal join procedure two graphs at a  time. 
The successful joins  are evaluated by counting  the  number 
of  concepts  in the resulting graphs. The graph with the 
smallest number of  concept  nodes is preferred, since that is 
the  one with the largest number of matching concepts (a 
maximal join).  The preference for maximal joins is similar 
to Wilks’s method of prejerence semantics [ 121. 

developed  a method of  moving  nodes  in the parse tree. The 
parser first generates exactly the  same  structure for John 
went to Boston b.v bus and John went to the chair b.v the 
window. To  support node moving, however, the parser keeps 
a list of other possible attachments for the modifiers. When 
joining graphs, the  semantic  interpreter would find that the 
window is not  an acceptable instrument for went. The node- 
moving technique would  try another  option of putting  the 
second PP in the postmodifier list for the chair. Then  the 
semantic interpreter  would find that the window is an 
acceptable  location for the chair and  join  the canonical 
graph  for by indicating the LOC relation. The  technique of 
generating  a single parse tree and adjusting  it by moving 
nodes is more efficient than generating all possible trees and 
throwing away ones  that violate the constraints. 

graphs to  determine  the  connections between the  input 
concepts. Schemata for  a  type are typically larger than  the 
canonical  graphs for that type: They  include  more 
background knowledge and a more extensive pattern of 
relationships. One of the extensions to be explored is the use 
of schemata  as  an  adjunct  to  the canonical  graphs  in 
semantic  interpretation.  There  are two possible ways of using 
them: 

To handle structural ambiguities, Heidorn  and Jensen [ 131 

The  interpreter described in this  paper uses only canonical 

JOHN F SOWA AND EILEEN C. WAY 



If an ambiguity cannot be resolved by canonical  graphs 
alone, try possible joins with schemata  and  take  the result 
that has the largest number of matching concepts. 

schema  that is applicable  could resolve many ambiguities 
at once.  Therefore,  it  might be more efficient to try joining 
schemata before or instead  of the simpler  canonical 
graphs. 

Since  a  schema  has  a large pattern of relationships, any 

Either of these approaches  could be implemented as an 
extension to  the  current interpreter. The basic algorithms 
would remain unchanged, and  the  only difference would be 
the use of schemata instead  of or in addition  to  the 
canonical graphs. But since the  number of schemata  may be 
much larger than  the  number of canonical  graphs, the 
efficient use of schemata requires an associative search or 
preference strategy for  finding the most likely candidates  to 
try. 

Other  implementations 
All implementations of conceptual graphs that  conform  to 
the formal  definition [ I ]  must,  at  the logical level, be 
isomorphic. Because of the  isomorphism, it is possible to 
write conversion routines  that  map  the  data  structures from 
one version to  another.  For example, output from the 
semantic  interpreter could be  sent  to a formatter  that 
displays the graphs as boxes and circles on a  screen, to a 
theorem prover that  does inferences  from them,  to a 
database system that stores and retrieves them,  or  to a 
language generator that translates them  into  some  other 
language (natural  or artificial). Even if those other systems 
used a different internal representation, they could express 
the  same  information  at a logical level. 

processors for conceptual graphs are being implemented  at 
several locations  in IBM and  at universities: 

Besides the  implementation described in  this paper, 

The KALIPSOS Project at  the IBM Paris Scientific Center 
is using conceptual graphs  for  a knowledge acquisition 
system [ 141. They are using Prolog to develop  a parser for 
French and  an inference  engine that processes Prolog-like 
rules with the predicates  represented as  conceptual graphs. 
They  have  also implemented a variety of  tools  for helping 
a knowledge engineer to analyze natural language text in 
order  to define the rules and facts of  a knowledge base. 
The Intelligent Help Project at  the IBM Los Angeles 
Scientific Center is developing  a computer help system 
based on conceptual graphs [ 151. They  have  been 
analyzing  typical  help  requests to  determine how they 
could be represented and processed with conceptual graphs 
and have developed a standard interchange notation for 
mapping  conceptual graphs  from one system to  another. 
Using that  notation, they have  developed  a processor for 
displaying the graphs on screens and  printers in the box 

68 and circle form as well as printing  them in the linear  form. 

JOHN F. SOWA AND EILEEN C. WAY 

At the University  of Bristol, Morton  and Baldwin [ 161 
have used Prolog to  implement a conceptual graph 
processor with extensions to handle fuzzy referents. Their 
front-end parser handles elliptical queries, anaphoric 
references, user definitions, and meta-queries. The back- 
end  maps conceptual  graphs  generated by the parser into 
FRIL, a fuzzy relational  database query language. They are 
also using conceptual  graphs  to represent  spatial and 
graphic  relationships  for  a computer vision system. 

representing audit  information in conceptual graphs. They 
have  built  a knowledge acquisition facility that enables an 
expert to define  concept  types with associated  canonical 
graphs  for any application.  They also implemented  an 
inference  engine that  does frame-like  reasoning with 
conceptual graphs. Their English front-end just uses a 
simple template  pattern  matcher,  but they plan to replace 
it with a more general parser. 
At the IBM Japan Science Institute, Maruyama [ 181 has 
used Prolog to  implement actors  attached to conceptual 
graphs  (as described in [ I ] ,  Section 4.6). Starting with a 
query graph for a user’s question,  the system joins 
schemata  containing  attached actors. Control  marks on 
the graphs trigger the  actors  to access database  relations or 
do computations.  The result of satisfying the  control 
marks is the answer to  the original query. For answering 
typical database queries,  actors attached  to conceptual 
graphs appear  to be more efficient than a general inference 
engine. Maruyama has  also  written  a translator for 
mapping propositions  stated  as conceptual graphs into 
Prolog clauses. 
At the IBM Toronto Laboratory, the Machine-Readable 
Information Project  has implemented a parser and 
semantic  interpreter in Prolog [ 191. The  grammar was 
mapped  into Prolog from the context-free  rules  of the 
Linguistic String  Project [20]. But instead of using the LSP 
restriction rules, they let the  semantic  interpreter use 
canonical  graphs to check constraints  on  the parsing. They 
have also implemented a graphics editor for  defining and 
displaying conceptual graphs. 

At Deakin  University, Garner  and  Tsui [ 171 are 

Since Prolog supports different kinds of data  structures 
from  PLNLP  or LISP, the Prolog implementations  must use 
different encodings  for the  same logical information.  For  the 
sentence, Felix the cat is chasing a mouse, the  conceptual 
graph  in  linear  form  would be 

[CHASE]- 
(AGNT) ”+ [CAT: Felix] 
(OBJ) - [MOUSE]. 

One  method of  representing  such  a  graph is to assign a 
unique identifier to each  concept (cl, c2, and c3) and 
represent  each  relation by a predicate. That graph  could then 
be represented by  five Prolog assertions: 

IBM J .  RES. DEVELOP. VOL. 30 NO. I JANUARY 1986 



id(cl, cat.felix). agnt(c2,cl). 
id(c2, chase.’*’). obj(c2,c3). 
id(c3, mouse.’*’). 
An assertion like id(c2,chase.’*’) means  that c2 identifies a 
concept whose type label is CHASE and whose referent is * 
(a generic  concept). The assertion agnt(c2,cl)  means  that 
concept c2 has an agent  c 1 .  Yet  this  representation is too 
limited: All concepts  are  at  the  same level, and  there is no 
way to show the nesting of  contexts.  A more general 
representation is to show a conceptual graph  as  a list of 
concepts with unique identifiers followed by a list of 
relations: 

cg((cl.cat.felix).(c2.chase.’*’).(c3.mouse.’*’).nil, 
(agnt.c2.~1).(obj.~2.c3).nil). 

The dyadic  function cg identifies the concept and relation 
lists of  a conceptual graph. This  structure could then be 
nested inside the referent of  a  concept of type 
PROPOSITION  (a context). For graph traversals, character 
string identifiers like cl  and  c2  are less efficient than  the 
direct  pointers  in PLNLP  (and its  underlying LISP system). 
But the backtracking and unification  algorithms  in Prolog 
may simplify other operations. In any case, the various 
processors implemented in  both languages are  quite fast, 
even though they are still experimental tools. 

Acknowledgments 
Both the design and  implementation work on this project 
benefited from  collaboration with the  PLNLP  group, 
especially George Heidorn, Karen  Jensen, and  Norman 
Haas. The  paper itself benefited from comments  and 
suggestions by George  Heidorn, Alex Hunvitz,  Hiroshi 
Maruyama,  and  the referees. 

References 
I .  

2. 

3. 

4. 

5 .  

6. 

7. 

J.  F. Sowa, Conceptual Struct~tres:  Information Processing in 
Mind and Machine, Addison-Wesley Publishing Co., Reading, 
MA. 1984. 
K. Jensen  and G. E. Heidorn,  “The  Fitted Parse: 100% Parsing 
Capability in a  Syntactic  Grammar  of English,” Proceedings of 
the Confirence on Applied Natural Language Processing. Santa 
Monica, CA. Association for  Computational Linguistics, 1983, 
pp. 93-98. 
Concc.ptuu1 In/i)rmation Processing, R. C. Schank, Ed.. North- 
Holland Publishing Co., Amsterdam, 1975. 
Inside  Computer Underst anding: Five Programs Plus 
Miniatures. R.  C.  Schank  and  C. K. Riesbeck, Eds., Lawrence 
Erlbaum Associates, Hillsdale. NJ, 198 I .  
G. E. Heidorn,  “Natural Language Inputs to a  Simulation 
Programming  System,” Report NPS-55HD72101A, Naval 
Postgraduate  School,  Monterey,  CA, 1972. 
G.  E. Heidorn,  “Augmented  Phrase  Structure  Grammar.” 
Theorehd Issues in Natural Language Processmg, R. C. 
Schank  and B.  L. Nash-Webber, Eds., Association for 
Computational Linguistics, 1975, pp. 1-5. 
C. S. Peirce. manuscripts  on existential graphs, reprinted in 
Collected Papers ?/Charles  Sanders Peirce, A.  W. Burks, Ed., 
Vol. 4, pp. 320-410, Harvard University Press, Cambridge, MA. 
For  a  summary  of these graphs, see D. D. Roberts, The 
Existential Graphs ef Charles S. Peirce, Mouton,  The Hague, 
1973. 

8. 

9. 

IO .  

1 1 .  

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

S. C. Shapiro.  “The  SNePS  Semantic Network Processing 
System.” A S S O ~ ~ U I ~ V L J  Networks: Reprrrentatron and Use qf 
Knowledge by Computers, N. V. Findler. Ed.. Academic Press, 
Inc.. New York, 1979. pp. 179-203. 
G. G. Hendrix.  “Expanding  the Utility of Semantic  Networks 
Through  Partitioning,” Proc IJCAI-75, pp. 115-121 (1975). 
H.  Kamp,  “Events, Discourse Representations,  and  Temporal 
Reference.” Langages 64, 39-64 (198 I ) .  
C. J .  Fillmore. “The Case for Case,” Universals in Linguistic 
Tllror!*, E.  Bach and  R.  T.  Harms, Eds., Holt,  Rinehart  and 
Winston, New York. 1968. pp. 1-88. 
Y. A. Wilks, “An Intelligent Analyzer and  Understander of 
English,” Commun.  ACM 18, 264-274 (1975). 
G. E. Heidorn  and K. Jensen.  “Parsing by Building and 
Adjusting an  Approximate Parse Tree,” presented at  Workshop 
on  Semantics  and  Representation of Knowledge, New York. 
1983. 
Jean Fargues, Marie-Claude Landau.  Anne  Dugourd,  and 
Laurent  Catach,  “Conceptual  Graphs  for  Semantics  and 
Knowledge Processing,” IBM J. Res. Develop. 30, No. 1, 70-79 
(1986, this issue). 
A. Hurwitz, IBM Los Angeles Scientific Center, personal 
communication. 
S. K. Morton  and J .  F. Baldwin. “Conceptual  Graphs  and Fuzzy 
Qualifiers in Natural Language Interfaces.” presented at  the 
Cambridge  Conference  on Fuzzy Sets. 1985. To appear in Fu;zy 
S m  and Sy.stems, 1986. 
B. J .  Garner  and E. Tsui, “Knowledge Representation in the 
Audit Office,” Australian  Comput.  J. 17 (August 1985). 
H.  Maruyama,  “Towards  a Discourse Analysis Using 
Conceptual  Graphs.” presented at  a working group meeting of 
the Information Processing Society of Japan, 1985 (written  in 
Japanese). 
J. Wilson and C. Tandy. IBM Toronto Laboratory. personal 
communication. 

Wesley Publishing Co., Reading, MA. 1981. 
20. N. Sager. Nuturd Language 1nfi)rmation Processing, Addison- 

Received A~rgtrst 12, 1985; revised  September I ,  1985 

John F. SOWa IBM Sysrems Research Institute, 500 Columbus 
,4venrre. Thornw)od, Neu York 10594. Mr. Sowa is a  senior staff 
member  at  the IBM Systems Research Institute. After receiving a 
B.S.  in mathematics from the Massachusetts Institute of Technology, 
Cambridge, in 1962, he joined  an  applied  mathematics group at 
IBM. Four years later, he attended  graduate school at  Harvard 
University, earning  an M.A. in  applied  mathematics  under  the IBM 
Resident Graduate  Study  Program. At IBM, his early work was in 
programming languages and  machine  architecture. Since 1972, he 
has concentrated  on artificial intelligence and  natural language 
processing. His research has appeared in numerous articles and in 
his book, Conceptual Structures: Information Processing in Mind 
and Machine. which was published by Addison-Wesley. Mr. Sowa 
belongs to a  number of professional societies, including  IFIP 
Working  Group 2.6, which is concerned with knowledge 
representation in databases  and AI. 

Eileen  Cornell Way S t m  Uniwr.sit1. ( j f  Neu York. Department of 
Sy.\tem Science, Binghamton. Neu York 13901. Ms. Way  is a 
graduate  student  at  the  State University of  New York. She has 
received a B.S. in philosophy from  Harpur College. Binghamton, 
New York. and  an M.S. from the School of Advanced Technology at 
the State University of  New York at  Binghamton.  She  implemented 
the  semantic  interpreter described in this paper while collaborating 
with John Sowa at  the IBM Systems Research Institute. Ms. Way 
plans  to  continue developing and  extending  the  interpreter as part of 
her work for her  Ph.D.  dissertation.  Her research interests include 
artificial intelligence, natural language processing, and knowledge 
representation.  She is a  member of the Association for Computing 
Machinery. the Society for General Systems Research, and  the 
American Philosophical Association. 

69 

3LEEN C. WAY IBM J.  RES. DEVELOP. VOL. 30 NO. I J IANUARY 1986 JOHN F. SOWA AND I 


