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Abstract.  A conceptual graph (CG) is a graph representation for logic based on the semantic networks 
of artificial intelligence and the existential graphs of Charles Sanders Peirce.  CG design principles 
emphasize the requirements for a cognitive representation:  a smooth mapping to and from natural 
languages; an “iconic” structure for representing patterns of percepts in visual and tactile imagery; and 
cognitively realistic operations for perception, reasoning, and language understanding.  The regularity 
and simplicity of the graph structures also support efficient algorithms for searching, pattern matching, 
and reasoning.  Different subsets of conceptual graphs have different levels of expressive power:  the 
ISO standard conceptual graphs express the full semantics of Common Logic (CL), which includes the 
subset used for the Semantic Web languages; a larger CG subset adds a context notation to support 
metalanguage and modality; and the research CGs are exploring an open-ended variety of extensions 
for aspects of natural language semantics.  Unlike most notations for logic, CGs can be used with a 
continuous range of precision:  at the formal end, they are equivalent to classical logic; but CGs can 
also be used in looser, less disciplined ways that can accommodate the vagueness and ambiguity of 
natural languages.  This chapter surveys the history of conceptual graphs, their relationship to other 
knowledge representation languages, and their use in the design and implementation of intelligent 
systems. 

1. Representing Conceptual Structures
Conceptual graphs are a notation for representing the conceptual structures that relate language to 
perception and action. Such structures must exist, but their properties can only be inferred from indirect 
evidence. Aristotle’s inferences, with later extensions and qualifications, are still fundamentally sound:  
the meaning triangle of symbol, concept, and object; logic as a method of analyzing reasoning (logos); 
and a hierarchy of psyches ranging from the vegetative psyche of plants, the psyche of primitive 
animals like sponges, the locomotive pysche of worms, the imagery of psyches with sight and hearing, 
to the human psyche of an animal having logos (zôon logon echein). The medieval Scholastics 
extended Aristotle’s logic, linguistics, and psychology, but Locke, Condillac, and the British empiricists 
developed more loosely structured theories about associations of ideas. Kant introduced schemata as 
tightly structured patterns of concepts and percepts, which became the foundation for many later 
developments. Peirce integrated aspects of all these proposals with modern logic in constructing a 
theory of signs that he called semeiotic. 

In the 20th century, behaviorists tried to avoid hypotheses about conceptual structures; fortunately, 
many psychologists ignored them.  Otto Selz (1913, 1922), who was dissatisfied with the undirected 
associationist theories, adapted Kant’s schemata for a goal-directed theory he called schematic  
anticipation.  Selz represented each schema as a network of concepts that contained empty slots, and he 
asked subjects to suggest appropriate concepts to fill the slots while he recorded their verbal protocols. 
Figure 1 shows a schema that Selz used in his experiments. 



 

Figure 1.  A schema used by Otto Selz 
The expected answers to the question marks in Figure 1 are generalizations of the words at the bottom:  
the supertype of Newspaper and Magazine is Periodical, and the supertype of Periodical and Book is 
Publication. After analyzing the methods subjects use to solve such puzzles, Selz proposed a theory of 
goal-directed search that starts with a schema as an anticipation of the final result and propagates the 
question marks to subsidiary schemata. Selz’s theories have a strong similarity to the backtracking 
methods developed by Newell and Simon (1972). That similarity is not an accident. Newell and Simon 
learned Selz’s theories from one of their visitors, the psychologist Adriaan de Groot, who used Selz’s 
methods to study the thinking processes of chessplayers. One of their students, Quillian (1968), cited 
Selz as a source for his version of semantic networks. For computation, Quillian designed a marker 
passing algorithm, inspired by Selz’s ideas for propagating question marks from one schema to another. 

Another source for semantic networks was the dependency grammar developed by Lucien Tesnière 
(1959). Figure 2 shows a dependency graph for the sentence L’autre jour, au fond d’un vallon, un 
serpent piqua Jean Fréron (The other day, at the bottom of a valley, a snake stung Jean Fréron). At the 
top is the verb piqua (stung); each word below it depends on the word above to which it is attached. 
The bull’s eye symbol indicates an implicit preposition (à). 

 

Figure 2.  A dependency graph in Tesnière’s notation 
Tesnière had a major influence on linguistic theories that place more emphasis on semantics than 
syntax. Hays (1964) proposed dependency graphs as an alternative to Chomsky’s notation, and Klein 
and Simmons (1963) developed a related version for machine translation. Those systems influenced 
Schank (1975), who adopted dependency graphs, but shifted the emphasis to concepts rather than 
words. Figure 3 shows a conceptual dependency graph for the sentence A dog is greedily eating a bone. 
Instead of Tesnière’s tree notation, Schank used different kinds of arrows for different relations, such as 



 for the agent-act relation and an arrow marked with ⇔ o for object or d for direction. He also replaced 
the words eat and greedily with labels that represent the concept types Ingest and Greedy. The 
subscript 1 on Dog indicates that the bone went into the same dog that ingested it. 

 

Figure 3.  Schank’s notation for conceptual dependencies 
The early semantic networks were used for machine translation and question answering, but they could 
not represent all the features of logic. The first publication on conceptual graphs (Sowa 1976) 
combined semantic networks with the quantifiers of predicate calculus and labeled the links between 
concepts with the case relations or thematic roles of linguistics (Fillmore 1968). That paper also 
presented a graph grammar for conceptual graphs based on four canonical formation rules. As an 
application, it illustrated CGs for representing natural language questions and mapping them to 
conceptual schemata. Each schema contained a declarative CG with attached actor nodes that 
represented functions or database relations. For computation, it proposed two kinds of marker passing 
for invoking the actors:  backward-chaining markers, as in the networks by Selz and Quillian, and 
forward-chaining markers, as in Petri nets (Petri 1965). As an example of the 1976 notation, Figure 4 
shows a conceptual graph for the sentence On Fridays, Bob drives his Chevy to St. Louis. 

 

Figure 4.  On Fridays, Bob drives his old Chevy to St. Louis. 
The rectangles in Figure 4 are called concept nodes, and the circles are called conceptual relation 
nodes. An arc pointing toward a circle marks the first argument of the relation, and an arc pointing 
away from a circle marks the last argument. If a relation has only one argument, the arrowhead is 
omitted. If a relation has more than two arguments, the arrowheads are replaced by integers 1,...,n. 
Each concept node has a type label, which represents the type of entity the concept refers to:  Friday, 
Person, Drive, City, Chevy, or Old. One of the concepts has a universal quantifier  to∀  
represent every Friday; two concepts identify their referents by the names Bob and "St. Louis"; 
and the remaining three concepts represent the existence of a Chevy, an instance of driving, and an 
instance of oldness. Each of the six relation nodes has a label that represents the type of relation:  agent 
(Agnt), point-in-time (PTim), destination (Dest), possession (Poss), theme (Thme), or 
attribute (Attr).  The CG as a whole asserts that on every Friday, the person Bob, who possesses an 
old Chevy, drives it to St. Louis.  Figure 4 can be translated to the following formula in a typed version 



of predicate calculus: 
   ( x1:Friday)( x2:Drive)( x3:Chevy)( x4:Old)∀ ∃ ∃ ∃
   (Person(Bob)  City("St. Louis")  PTim(x2,X1)∧ ∧
       Agnt(x2,Bob)  Poss(Bob,x3)  Thme(x2,x3)∧ ∧ ∧
       Attr(x3,x4)  Dest(x2,"St. Louis"))∧ ∧

As this translation shows, any concept without a name or a universal quantifier has an implicit 
existential quantifier. The default assumption for scope gives the universal quantifier higher precedence 
than existentials. That leaves open the question whether Bob drives the same old Chevy or a different 
one on each Friday. 

A later version of CGs (Sowa 1984) used Peirce’s existential graphs (EGs) as the logical foundation. 
An important feature of EGs is an explicit enclosure to delimit the scope of quantifiers and other 
logical operators. The CG in Figure 5 has a large context box as a delimiter; the subgraph for Bob and 
his old Chevy is outside that scope. Since the referent for the city of St. Louis is designated by a proper 
name, it is a constant, which can be left inside the box or moved outside the box without any change to 
the logic. The resulting CG represents Bob has an old Chevy, and on Fridays, he drives it to St. Louis. 

 

Figure 5.  A context box for delimiting the scope of quantifiers 

The translation of Figure 5 to predicate calculus moves the quantifiers for Bob and his old Chevy in 
front of the universal. The only existential quantifier that remains within the scope of the universal is 
the one for the concept [Drive]: 
   ( x1:Chevy)( x2:Old)(Person(Bob)  Poss(Bob,x1)  Attr(x1,x2)∃ ∃ ∧ ∧
       ( x3:Friday)( x4:Drive)(City("St. Louis")  PTim(x4,X3)∧ ∀ ∃ ∧
          Agnt(x4,Bob)  Thme(x4,x1)  Dest(x4,"St. Louis")))∧ ∧ ∧

The graphical notation illustrated in Figures 4 and 5 is called the CG display form. A linear 
representation for CGs, called the Conceptual Graph Interchange Format (CGIF), is one of the three 
standard dialects for Common Logic (ISO/IEC 24707). CGIF has a one-to-one mapping to and from the 
nodes of the display form. Following is the CGIF version of Figure 5: 
   [Person Bob] [Chevy *x1] [Old *x2] (Poss Bob ?x1) (Attr ?x1 ?x2)
   [ [Friday @every*x3] [Drive *x4] [City "St. Louis"] (PTim ?x4 ?x3)
     (Agnt ?x4 Bob) (Thme ?x4 ?x1) (Dest ?x2 "St. Louis") ]



Square brackets represent the concept nodes, and parentheses represent the relation nodes. Connections 
between concepts and relations are indicated by names, such as Bob and "St. Louis" or by 
coreference labels such as *x1 and ?x1. Special characters such as  are represented by ASCII∀  
strings such as @every; the conjunction symbol ∧ is not needed, since the graph implies a 
conjunction of all the nodes in the same context. The first occurrence of any coreference label, called a 
defining label, is marked by an asterisk *x1; bound labels, marked by a question mark ?x1, indicate a 
link to the node that contains the corresponding defining label. Note that Friday and Chevy 
represent types, not names of instances.  Type labels are placed on the left side of a node; names, 
quantifiers, and coreference labels are on the right. 

Graphs have advantages over linear notations in human factors and computational efficiency.  As 
Figures 4 and 5 illustrate, the CG display form can show relationships at a glance that are harder to 
see in the linear notations for logic.  Graphs also have a highly regular structure that can simplify 
many algorithms for searching, pattern matching, and reasoning.  Although nobody knows how any 
information is represented in the brain, graphs minimize extraneous detail:  they show connections 
directly, and they avoid the ordering implicit in strings or trees.  The remaining sections of this chapter 
develop these ideas further:  natural logic in Section 2; reasoning methods in Section 3; context and 
metalanguage in Section 4; research issues in Section 5; and the ISO standard for Common Logic in the 
appendix, which includes the CGIF grammar. 

2. Toward a Natural Logic
From Aristotle and Euclid to Boole and Peirce, the twin goals of logic were to understand the reasoning 
processes in language and thought and to develop a tool that could facilitate reasoning in philosophy, 
mathematics, science, and practical applications. Various researchers put more emphasis on one goal or 
the other. Selz, Tesnière, and many linguists and psychologists studied the mechanisms underlying 
language and thought. Frege and most 20th-century logicians emphasized the applications to 
mathematics. Peirce and some AI researchers put equal emphasis on both. During his long career, 
Peirce invented several different notations for logic:  an algebra of relations (1870) that is similar to the 
relational algebra used in database systems; an extension to Boolean algebra (1880, 1885), which 
became the modern predicate calculus; and existential graphs (1906, 1909), whose inference rules, he 
claimed, present “a moving picture of thought.” 

The first complete version of first-order logic was a tree notation by Frege (1879) called Begriffsschrift 
(concept writing). For his trees, Frege used only four operators:  assertion (the “turnstile” operator ), 
negation (a short vertical line), implication (a hook), and the universal quantifier (a cup containing the 
bound variable). Figure 6 shows Frege’s notation for the sentence Bob drives his Chevy to St. Louis. 

 

Figure 6.  Frege’s Begriffsschrift for Bob drives his Chevy to St. Louis. 



Frege had a contempt for language, and set out “to break the domination of the word over the human 
spirit by laying bare the misconceptions that through the use of language often almost unavoidably 
arise concerning the relations between concepts.” His choice of operators simplified his rules of 
inference, but they led to cumbersome paraphrases in natural language. A direct translation of Figure 6 
to predicate calculus would be 

~(∀x)(∀y) (Drive(x)  (Person(Bob)  (City("St. Louis")  (Chevy(⊃ ⊃ ⊃ y)  ⊃
      (Agnt(x,Bob)  (Dest(⊃ x,"St. Louis")  (Thme(⊃ x,y)  ~Poss(Bob,⊃ y) ))))))) 

In English, this formula could be read It is false that for every x and y, if x is an instance of driving then 
if Bob is a person then if St. Louis is a city then if y is a Chevy then if the agent of x is Bob then if the 
destination of x is St. Louis then if the theme of x is y then Bob does not possess y. 

Although Peirce had invented the algebraic notation for predicate calculus, he believed that a graph 
representation would be more cognitively realistic. While he was still developing the algebra of logic, 
he experimented with a notation for relational graphs. Figure 7 shows a relational graph for the same 
sentence as Figure 6. In that graph, an existential quantifier is represented by line or by a ligature of 
connected lines, and conjunction is the default Boolean operator. Since those graphs did not represent 
proper names, monadic predicates isBob and isStLouis are used to represent names. 

 

Figure 7.  A relational graph for Bob drives a Chevy to St. Louis. 
Figure 7 contains four ligatures:  one for the instance of driving, one for Bob, one for the Chevy, and 
one for St. Louis. Each ligature maps to an existentially quantified variable in predicate calculus: 

(∃x)(∃y)(∃z)(∃w)(Drive(x)  Agnt(∧ x,y)  Person(∧ y)  isBob(∧ y)  Poss(∧ y,z)  ∧
      Thme(x,z)  Chevy(∧ z)  Dest(∧ x,w)  City(∧ w)  isStLouis(∧ w) ) 

Peirce experimented with various graphic methods for representing the other operators of his algebraic 
notation, but like the AI researchers of the 1960s, he couldn’t find a good way to express the scope of 
quantifiers and negation. In 1897, however, he discovered a simple, but brilliant innovation for his new 
version of existential graphs (EGs):  an oval enclosure for showing scope. The default operator for an 
oval with no other marking is negation, but any metalevel relation can be linked to the oval. The graph 
on the left of Figure 8 is an EG for the sentence If a farmer owns a donkey, then he beats it. Since an 
implication p⊃q is equivalent to ~(p ~∧ q), the nest of two ovals expresses if p then q. To enhance the 
contrast, Peirce would shade any area enclosed in an odd number of negations. 



 

Figure 8.  EG and CG for If a farmer owns a donkey, then he beats it. 
The equivalent conceptual graph is on the right of Figure 8. Since boxes nest better than ovals, Peirce’s 
ovals are represented by rectangles marked with the symbol ¬ for negation. The choice of ovals or 
boxes, however, is a trivial difference. Three other differences are more significant:  first, each 
rectangle can be interpreted as a concept node to which conceptual relations other than negation may be 
attached; second, the existential quantifiers, which are represented by EG lines, are represented by CG 
nodes, which may contain proper names, universal quantifiers, or even generalized quantifiers; and 
third, the type labels on the left side of a concept node restrict the range of quantifiers. Therefore, the 
EG maps to an untyped formula: 

~(∃x)(∃y)(Farmer(x)  Donkey(∧ y)  Owns(∧ x,y)  ~Beats(∧ x,y)) 

But the CG maps to the logically equivalent typed formula: 

~(∃x:Farmer)(∃y:Donkey)(Owns(x,y)  ~Beats(∧ x,y)) 

In order to preserve the correct scope of quantifiers, the implication operator  cannot be used to⊃  
represent an English if-then sentence unless the existential quantifiers are converted to universals and 
moved to the front: 

(∀x)(∀y)((Farmer(x)  Donkey(∧ y)  Owns(∧ x,y))  Beats(⊃ x,y)) 

In English, this formula could be read For every x and y, if x is a farmer who owns a donkey y, then x 
beats y. The unusual nature of this paraphrase led Kamp (1981) to develop discourse representation 
structures (DRSs) whose logical structure is isomorphic to Peirce’s existential graphs (Figure 9). 

 

Figure 9.  EG and DRS for If a farmer owns a donkey, then he beats it. 
Kamp’s primitives are the same as Peirce’s:  the default quantifier is the existential, and the default 
Boolean operator is conjunction. Negation is represented by a box, and implication is represented by 
two boxes. As Figure 9 illustrates, the EG contexts allow quantifiers in the if clause to include the then 



clause in their scope. Although Kamp connected his boxes with an arrow, he made the same assumption 
about the scope of quantifiers. Kamp and Reyle (1993) went much further than Peirce in analyzing 
discourse and formulating the rules for interpreting anaphoric references, but any rule stated in terms of 
the DRS notation can also be applied to the EG or CG notation. 

The CG in Figure 8 represents the verbs owns and beats as dyadic relations. That was the choice of 
relations selected by Kamp, and it can also be used with the EG or CG notation. Peirce, however, noted 
that the event or state expressed by a verb is also an entity that can be referenced by a quantified 
variable. That point was independently rediscovered by linguists, computational linguists, and 
philosophers such as Davidson (1967). The CG in Figure 10 represents events and states as entities 
linked to their participants by linguistic relations. The type labels If and Then indicate negated 
contexts; the two new relation types are Expr for experiencer and Ptnt for patient. 

 

Figure 10.  CG with case relations shown explicitly 

All the notations in this section, including the diagrams and predicate calculus, can express full first-
order logic. Since natural languages can also express full FOL, that expressive power is a requirement 
for a natural logic. But natural languages can express much more or much less, and they can be vague, 
precise, cryptic, erudite, or naive. Therefore, a natural logic must be flexible enough to vary the level of 
expression and precision as needed. The choice of logical operators is one consideration. Frege’s choice 
is awkward for the sample sentence, and Peirce’s choice is better. Predicate calculus has five or six 
common operators, and it can accommodate new ones as needed. For mathematics, many choices of 
primitives, such as Frege’s or Peirce’s, can be used to define all the others. For empirical subjects, 
however, conjunction and the existential quantifier are the only operators that can be observed directly, 
and the others must be inferred from indirect evidence. Therefore, Peirce’s choice of primitives 
combined with a mechanism for defining other operators seems appropriate. 

The structure of logical expressions is another consideration. As Peirce, Tesnière, and the AI 
researchers have shown, graphs can be directly mapped to natural languages, they can be as precise as 
any other notation for logic, and they can represent vague sentences as easily as precise ones. Graphs 
have the minimum syntax needed to show connections, but something more is required to show the 
scope of the logical operators. The fact that Peirce and Kamp independently discovered isomorphic 
enclosures for showing scope is an important point in their favor. Those arguments suggest that 
relational graphs with the Peirce-Kamp enclosures are a good candidate for the structure. The CG 
extensions show that more features can be added while preserving the overall simplicity. A truly natural 
logic should support reasoning methods that could also be considered natural. 

3. A Moving Picture of Thought
Like the graphs themselves, Peirce’s rules for graph logics are simple enough to be considered 
candidates for a natural logic:  each rule of inference inserts or erases a single graph or subgraph. 
Peirce’s proof procedure is a generalization and simplification of natural deduction, which Gentzen 



(1935) invented 30 years later. Although Peirce originally stated his rules in terms of the EG syntax, 
they can be restated in a form that depends only on the semantics. That approach has a striking 
similarity to recent work on the category-theoretic treatment of proofs (Hughes 2006; McKinley 2006). 
As a psychological hypothesis, a syntax-independent procedure can be evaluated in terms of external 
evidence without any assumptions about internal representations. 

To implement a proof procedure, semantic rules must be related to syntax. In 1976, the canonical 
formation rules were presented as a generative grammar for CGs. The 1984 version was also a 
generative grammar, but the rules were explicitly related to their semantic effects. The latest version 
(Sowa 2000) classifies the rules in three groups according to their semantic effects:  equivalence, 
specialization, and generalization. Each rule transforms a starting graph or graphs u to a resulting 
graph v: 

• Equivalence.  Copy and simplify are equivalence rules, which generate a graph v that is 
logically equivalent to the original:  u⊃v and v⊃u. Equivalent graphs are true in exactly the 
same models. 

• Specialization.  Join and restrict are specialization rules, which generate a graph v that implies 
the original:  v⊃u. Specialization rules monotonically decrease the set of models in which the 
result is true. 

• Generalization.  Detach and unrestrict are generalization rules, which generate a graph v that is 
implied by the original:  u⊃v. Generalization rules monotonically increase the set of models in 
which the result is true. 

Each rule has an inverse rule that undoes any change caused by the other. The inverse of copy is 
simplify, the inverse of restrict is unrestrict, and the inverse of join is detach. Combinations of these 
rules, called projection and maximal join, perform larger semantic operations, such as answering a 
question or comparing the relevance of different alternatives. The next three diagrams (Figures 11, 12, 
and 13) illustrate these rules with simple graphs, which use only conjunction and existential quantifiers. 

 

Figure 11.  Copy and simplify rules 

The CG at the top of Figure 11 represents the sentence The cat Yojo is chasing a mouse. The down 
arrow represents two applications of the copy rule. One application copies the (Agnt) relation, and a 



second copies the subgraph →(Thme)→[Mouse]. The dotted line connecting the two [Mouse] 
concepts is a coreference link, which indicates that both concepts refer to the same individual; it 
represents equality in predicate calculus. The up arrow represents two applications of the simplify rule, 
which performs the inverse operations of erasing redundant copies. Following are the CGIF sentences 
for both graphs: 
     [Cat: Yojo] [Chase: *x] [Mouse: *y] (Agent ?x Yojo) (Thme ?x ?y)
     [Cat: Yojo] [Chase: *x] [Mouse: *y] [Mouse: ?y]
     (Agent ?x Yojo) (Agent ?x Yojo) (Thme ?x ?y) (Thme ?x ?y)

As the CGIF illustrates, the copy rule makes redundant copies, which are erased by the simplify rule. In 
effect, the copy rule is p (⊃ p∧p), and the simplify rule is (p∧p)⊃p. 

 

Figure 12.  Restrict and unrestrict rules 

The CG at the top of Figure 12 represents the sentence A cat is chasing an animal. By two applications 
of the restrict rule, it is transformed to the CG for The cat Yojo is chasing a mouse. In the first step, the 
concept [Cat], which says that there exists some cat, is restricted by referent to the more specific 
concept [Cat: Yojo], which says that there exists a cat named Yojo. In the second step, the concept 
[Animal], which says that there exists an animal, is restricted by type to a concept of a subtype 
[Mouse].  The more specialized graph implies the more general one:  if the cat Yojo is chasing a 
mouse, then a cat is chasing an animal. To show that the bottom graph v implies the top graph u, let c 
be a concept of u that is being restricted to a more specialized concept d, and let u be c∧w, where w is 
the remaining information in u.  By hypothesis, d⊃c.  Therefore, (d∧w) (⊃ c∧w).  Hence, v⊃u. 

 

Figure 13.  Join and detach rules 

At the top of Figure 13 are two CGs for the sentences Yojo is chasing a mouse and A mouse is brown. 
The join rule overlays the two identical copies of the concept [Mouse] to form a single CG for the 



sentence Yojo is chasing a brown mouse. The detach rule undoes the join to restore the top graphs. 
Following are the CGIF sentences that represent the top and bottom graphs of Figure 13: 
     [Cat: Yojo] [Chase: *x] [Mouse: *y] (Agent ?x Yojo) (Thme ?x ?y)
     [Mouse: *z] [Brown: *w] (Attr ?z ?w)
     [Cat: Yojo] [Chase: *x] [Mouse: *y] (Agent ?x Yojo) (Thme ?x ?y)
     [Brown: *w] (Attr ?y ?w)

As the CGIF illustrates, the bottom graph consists of substituting y for every occurrence of z in the top 
graph and erasing redundant copies. In general, every join assumes an equality of the form y=z and 
simplifies the result. If q is the equality and u is the top pair of graphs, then the bottom graph is 
equivalent to q∧u, which implies u. Therefore, the result of join implies the original graphs. Together, 
the generalization and equivalence rules are sufficient for a complete proof procedure for the simple 
graphs with no negations. The specialization and equivalence rules can be used in a refutation 
procedure for a proof by contradiction. 

To handle full first-order logic, rules for negations must be added to the canonical formation rules. 
Peirce defined a complete proof procedure for FOL whose rules depend on whether a context is 
positive (nested in an even number of negations, possibly zero) or negative (nested in an odd number of 
negations). Those rules are grouped in three pairs:  one rule (i) inserts a graph, and the other (e) erases a 
graph. The only axiom is a blank sheet of paper (an empty graph with no nodes). In effect, the blank is 
a generalization of all other graphs. Following is a restatement of Peirce’s rules in terms of 
specialization and generalization. These same rules apply to both propositional logic and full first-order 
logic. In FOL, the operation of inserting a coreference link between two nodes has the effect of 
identifying them (i.e., inserting an equality); erasing a coreference link has the inverse effect of erasing 
an equality. In a linear notation, such as CGIF or predicate calculus, the operation of inserting or 
erasing an equality requires an additional operation of renaming labels. In a pure graph notation, there 
are no labels and no need for renaming. 

1. (i)  In a negative context, any graph or subgraph (including the blank) may be replaced by any 
specialization. 

(e)  In a positive context, any graph or subgraph may be replaced by any generalization 
(including the blank). 

2. (i)  Any graph or subgraph in any context c may be copied in the same context c or into any 
context nested in c. (No graph may be copied directly into itself. But it is permissible to copy a 
graph g in the context c and then make a copy of the copy inside the original g.) 

(e)  Any graph or subgraph that could have been derived by rule 2i may be erased. (Whether or 
not the graph was in fact derived by 2i is irrelevant.) 

3. (i)  A double negation (nest of two negations with nothing between the inner and outer) may be 
drawn around any graph, subgraph, or set of graphs in any context. 

(e)  Any double negation in any context may be erased. 

This version of the rules was adapted from a tutorial on existential graphs by Peirce (1909). When these 
rules are applied to CGIF, some adjustments may be needed to rename coreference labels or to convert 
a bound label to a defining label or vice versa. For example, if a defining node is erased, some bound 
label ?x may become the new defining label *x. Such adjustments are not needed in the pure graph 
notation. 



All the axioms and rules of inference for classical FOL, including the rules of the Principia 
Mathematica, natural deduction, and resolution, can be proved in terms of Peirce’s rules. As an 
example, Frege’s first axiom, written in the algebraic notation, is a (⊃ b⊃a). Figure 14 shows a proof by 
Peirce’s rules. 

 

Figure 14.  Proof of Frege’s first axiom by Peirce’s rules 

In CGIF, the propositions a and b can be represented as relations with zero arguments:  (a) and (b). 
Following are the five steps of Figure 14: 

1. By rule 3i, Insert a double negation around the blank:  ~[ ~[ ]] 

2. By 3i, insert a double negation around the previous one:  ~[ ~[ ~[ ~[ ]]]] 

3. By 1i, insert (a):  ~[ (a) ~[ ~[ ~[ ]]]] 

4. By 2i, copy (a):  ~[ (a) ~[ ~[ ~[ (a) ]]]] 

5. By 1i, insert (b):  ~[ (a) ~[ ~[ (b) ~[ (a) ]]]] 

The theorem to be proved contains five symbols, and each step of the proof inserts one symbol into its 
proper place in the final result. All the axioms of any version of FOL could be derived from a blank by 
similarly short proofs. 

Frege’s two rules of inference were modus ponens and universal instantiation. Figure 15 is a proof of 
modus ponens, which derives q from a statement p and an implication p⊃q: 

 

Figure 15.  Proof of modus ponens 

Following is the CGIF version of Figure 15: 

1. Starting graphs:  (p) ~[ (p) ~[ (q) ]] 

2. By 2e, erase the nested copy of (p):  (p) ~[ ~[ (q) ]] 

3. By 1e, erase (p):  ~[ ~[ (q) ]] 

4. By 3e, erase the double negation:  (q) 

The rule of universal instantiation allows any term t to be substituted for a universally quantified 
variable in a statement of the form (∀x)P(x) to derive P(t).  In EGs, the term t would be represented 
by a graph of the form –t, which states that something satisfying the condition t exists:  (∃y)t(y).  The 
universal quantifier  corresponds to a negated existential ∀ ~ ~∃ , represented by a line whose outermost 
part occurs in a negative area. Since a graph has no variables, there is no notion of substitution. Instead, 
the proof in Figure 16 performs the equivalent operation by connecting the two lines. 



 

Figure 16.  Proof of universal instantiation 

The four steps of Figure 16 can be written in CGIF, but steps 2 and 3 require some adjustments to the 
coreference labels: 

1. Starting graphs:  [*y] (t ?y) ~[ [*x] ~[ (P ?x) ]] 

2. By 2i, copy [*y] and change the defining label *y to a bound label ?y in the copy:  
[*y] (t ?y) ~[ [?y] [*x] ~[ (P ?x) ]] 

3. By 1i, insert a connection by relabeling *x and ?x to ?y, and erasing one copy of [?y]:  
[*y] (t ?y) ~[ ~[ (P ?y) ]] 

4. By 3e, erase the double negation:  [*y] (t ?y) (P ?y) 

With the universal quantifier @every, the starting graphs of Figure 16 could be written 
     [*y] (t ?y) [(P [@every*x])]

The extra brackets around the last node ensure that the existential quantifier [*y] is outside the scope 
of @every*x.  Universal instantiation can be used as a one-step rule to replace [@every*x] with 
?y.  Then the brackets around [(P ?y)] may be erased to derive line 4 above. 

In the Principia Mathematica, Whitehead and Russell proved the following theorem, which Leibniz 
called the Praeclarum Theorema (Splendid Theorem). It is one of the last and most complex theorems 
in propositional logic in the Principia, and it required a total of 43 steps: 

((p⊃r)  (∧ q⊃s))  ((⊃ p∧q)  (⊃ r∧s)) 

With Peirce’s rules, this theorem can be proved in just seven steps starting with a blank sheet of paper 
(Figure 17). Each step inserts or erases one graph, and the final graph is the statement of the theorem. 

 

Figure 17.  Proof in 7 steps instead of 43 in the Principia 



After only four steps, the graph looks almost like the desired conclusion, except for a missing copy of s 
inside the innermost area. Since that area is positive, it is not permissible to insert s directly. Instead, 
Rule 2i copies the graph that represents q⊃s. By Rule 2e, the next step erases an unwanted copy of q. 
Finally, Rule 3e erases a double negation to derive the conclusion. 

Unlike Gentzen’s version of natural deduction, which uses a method of making and discharging 
assumptions, Peirce’s proofs proceed in a straight line from a blank sheet to the conclusion:  every step 
inserts or erases one subgraph in the immediately preceding graph. As Figure 17 illustrates, the first 
two steps of any proof that starts with a blank must draw a double negation around the blank and insert 
a graph into the negative area. That graph is usually the entire hypothesis of the theorem to be proved. 
The remainder of the proof develops the conclusion in the doubly nested blank area. Those two steps 
are the equivalent of Gentzen’s method of making and discharging an assumption, but in Gentzen’s 
approach, the two steps may be separated by arbitrarily many intervening steps, and a system of 
bookkeeping is necessary to keep track of the assumptions. With Peirce’s rules, the second step follows 
immediately after the first, and no bookkeeping is required. 

In summary, generalization and specialization, as performed by the canonical formation rules, are one-
step operations that occur frequently in the ordinary use of language. Peirce’s rules are also one-step 
operations that are simpler than the rules that Gentzen called “natural.” The canonical formation rules 
have been implemented in nearly all CG systems, and they have been used in formal logic-based 
methods, informal case-based reasoning, and various computational methods. A multistep combination, 
called a maximal join, is used to determine the extent of the unifiable overlap between two CGs. In 
natural language processing, maximal joins help resolve ambiguities and determine the most likely 
connections of new information to background knowledge and the antecedents of anaphoric references. 
Stewart (1996) implemented Peirce’s rules of inference in a first-order theorem prover for EGs and 
showed that its performance is comparable to resolution theorem provers. So far, no one has ever 
proposed a proof procedure that would have a better claim to the title “natural logic.” 

4. Representing Natural Language Semantics
Natural languages are highly expressive systems that can state anything that can be expressed in any 
formal language or logic. That enormous expressive power makes it difficult or impossible for any 
formalism to represent every feature of every natural language. To increase the range of expressibility, 
conceptual graphs constitute an open-ended family of notations with a formally defined core. Each of 
the following four levels of CGs can be expressed in the graphic display form or the linear CGIF: 

• Core CGs.  A typeless version of logic that expresses the full semantics of Common Logic, as 
defined by ISO/IEC 24707. This level corresponds to Peirce’s existential graphs:  its only 
logical primitives are conjunction, negation, and the existential quantifier. Core CGs permit 
quantifiers to range over relations, but Peirce also experimented with that option for EGs. 

• Extended CGs.  An upward compatible extension of the core, which adds a universal 
quantifier; type labels for restricting the range of quantifiers; Boolean contexts with type labels 
If, Then, Either, Or, Equivalence, and Iff; and the option of importing external CGIF 
text. Core and extended CGs have exactly the same expressive power, since the semantics of 
extended CGs is defined by a formal translation to core CGs. Extended CGs are usually more 
concise than core CGs, and they have a more direct mapping to and from natural languages. 

• CGs with contexts.  An upward compatible extension of core and extended CGs to support 
metalanguage, the option of using language to talk about language. That option requires some 
way of quoting or delimiting object level statements from metalevel statements. As a delimiter, 



CG notations use a type of concept node, called a context, which contains a nested conceptual 
graph (Figure 18). CG contexts can be formalized by the IKL semantics, which includes the CL 
semantics as a subset (Hayes & Menzel 2006). Another formalization, which can be adapted to 
the IKL semantics, is the system of nested graph models (Sowa 2003, 2005). Either or both of 
these formalizations can be used in an upward compatible extension of core and extended CGs. 

• Research CGs.  Adaptations of the CG notation for an open-ended variety of purposes. The 
advantage of a standard is a fixed, reliable platform for developing computer systems and 
applications. The disadvantage of a standard is the inability to explore useful modifications. But 
the combination of an ISO standard with the option of open-ended variations gives developers a 
solid basis for applications without limiting the creativity of researchers. Research extensions 
that prove to be useful may be incorporated in some future standard. 

Peirce’s first use for the oval was to negate the graphs nested inside, and that is the only use supported 
by the ISO standard. But Peirce (1898) generalized the ovals to context enclosures, which allow 
relations other than negation to be linked to the enclosure. The basic use of a context enclosure is to 
quote the nested graphs. That syntactic option allows metalevel statements outside the context to 
specify how the nested (object level) graphs are interpreted. Nested graph models (NGMs) can be used 
to formalize the semantics of many kinds of modal and intensional logics. A hierarchy of metalevels 
with the NGM semantics can express the equivalent of a wide range of modal, temporal, and 
intentional logics. The most useful NGMs can be represented with the IKL semantics, but the many 
variations and their application to natural languages have not yet been fully explored. 

The most common use of language about language is to talk about the beliefs, desires, and intentions of 
the speaker and other people. As an example, the sentence Tom believes that Mary wants to marry a 
sailor, contains three clauses, whose nesting may be marked by brackets: 
     Tom believes that [Mary wants [to marry a sailor]].
The outer clause asserts that Tom has a belief, which is the object of the verb believe. Tom’s belief is 
that Mary wants a situation described by the nested infinitive, whose subject is the same person who 
wants the situation. Each clause makes a comment about the clause or clauses nested in it. References 
to the individuals mentioned in those clauses may cross context boundaries in various ways, as in the 
following two interpretations of the original English sentence: 
     Tom believes that [there is a sailor whom Mary wants [to marry]].
     There is a sailor whom Tom believes that [Mary wants [to marry]].
The two conceptual graphs in Figure 18 represent the first and third interpretations. In the CG on the 
left, the existential quantifier for the concept [Sailor] is nested inside the situation that Mary wants. 
Whether such a sailor actually exists and whether Tom or Mary knows his identity are undetermined. 
The CG on the right explicitly states that such a sailor exists; the connections of contexts and relations 
imply that Tom knows him and that Tom believes that Mary also knows him. Another option (not 
shown) would place the concept [Sailor] inside the context of type Proposition; it would leave 
the sailor’s existence undetermined, but it would imply that Tom believes he exists and that Tom 
believes Mary knows him. 



 

Figure 18.  Two interpretations of Tom believes that Mary wants to marry a sailor 

The context boxes illustrated in Figures 4 and 6 express negations or operators such as If and Then, 
which are defined in terms of negations.  But the contexts of type Proposition and Situation in 
Figure 18 raise new issues of logic and ontology.  The CL semantics can represent entities of any type, 
including propositions and situations, but it has no provision for relating such entities to the internal 
structure of CL sentences.  A more expressive language, called IKL (Hayes & Menzel 2006), was 
defined as an upward compatible extension of CL.  The IKL semantics introduces entities called 
propositions and a special operator, spelled that, which relates IKL sentences to the propositions they 
express.  IKL semantics does not have a built-in type for situations, but it is possible in IKL to make 
statements that state the existence of entities of type Situation and relate them to propositions. 

The first step toward translating the CGs in Figure 18 to IKL is to write them in an extended version of 
CGIF, which allows CGs to be nested inside concept nodes of type Proposition or Situation. 
Following is the CGIF for the CG on the left: 
     [Person: Tom] [Believe: *x1] (Expr ?x1 Tom)
     (Thme ?x1 [Proposition:
        [Person: Mary] [Want: *x2] (Expr ?x2 Mary)
        (Thme ?x2 [Situation:
           [Marry: *x3] [Sailor: *x4] (Agnt ?x3 Mary) (Thme ?x3 ?x4)])])
This statement uses the option of moving the concept nodes for the types Proposition and 
Situation inside the relation nodes of type Thme. That option has no semantic significance, but it 
makes the order of writing the CGIF closer to English word order.  A much more important semantic 
question is the relation between situations and propositions.  In the ontology commonly used with CGs, 
that relation is spelled Dscr and called the description relation. The last two lines of the CGIF 
statement above could be rewritten in the following form: 
     (Thme ?x2 [Situation: *s]) (Dscr ?s [Proposition:
        [Marry: *x3] [Sailor: *x4] (Agnt ?x3 Mary) (Thme ?x3 ?x4)])])
The last line is unchanged, but the line before it states that the theme of x2 is the situation s and the 
description of s is the proposition stated on the last line. In effect, every concept of type Situation 
that contains a nested CG is an abbreviation for a situation that is described by a concept of type 
Proposition that has the same nested CG. This expanded CGIF statement can then be translated to 
IKL (which is based on CLIF syntax with the addition of the operator that). 
     (exists ((x1 Believe)) (and (Person Tom) (Expr x1 Tom)
        (Thme x1 (that (exists ((x2 Want) (s Situation)) 
           (and (Person Mary) (Expr x2 Mary) (Thme x2 s) (Dscr s (that
              (exists ((x3 Marry) (x4 Sailor)) (and (Agnt x3 Mary) (Thme x3 x4)
     ))))))))))



Note that every occurrence of Proposition in CGIF corresponds to that in IKL. The syntax of 
CLIF or IKL requires more parentheses than CGIF because every occurrence of exists or and 
requires an extra closing parenthesis at the end. 

As these examples illustrate, the operator that adds an enormous amount of expressive power, but 
IKL still has a first-order style of semantics.  The proposition nodes in CGs or the that operator in 
IKL introduce abstract entities of type Proposition, but propositions are treated as zero-argument 
relations, which are supported by the semantics of Common Logic.  Although language about 
propositions is a kind of metalanguage, it does not, by itself, go beyond first-order logic. Tarski (1933), 
for example, demonstrated how a stratified series of metalevels, each of which is purely first order, can 
be used without creating paradoxes or going beyond the semantics of FOL. In effect, Tarski avoided 
paradoxes by declaring that certain kinds of sentences (those that violate the stratification) do not 
express propositions in his models. The IKL model theory has a similar way of avoiding paradoxes:  it 
does not require every model to include a proposition for every possible sentence. For example, the 
following English sentence, which sounds paradoxical, could be expressed in either IKL or CGIF 
syntax: 

There exists a proposition p, p is true, 
and p is the proposition that p is false. 

Since IKL does not require every sentence to express a proposition in every model, there are 
permissible IKL models in which this sentence is false simply because no such proposition exists. 
Therefore, the paradox vanishes because the sentence has a stable, but false, truth value. 

Issues of context and metalanguage require some syntactic and semantic extensions beyond the CL 
standard. The syntax for context was proposed by Sowa (1984) with a semantics that was a subset of 
the later IKL and NGM versions. Syntax for the following three extensions has also been available 
since 1984, and some CG systems have implemented versions of them. But they are not yet in ISO 
standard CGIF because a fully general treatment would involve ongoing research in linguistics: 

• Generalized quantifiers.  In addition to the usual quantifiers of every and some, natural 
languages support an open-ended number of quantificational expressions, such as exactly one, 
at least seven, or considerably more. Some of these quantifiers, such as exactly one cat, could 
be represented as [Cat: @1] and defined in terms of the CL standard. Others, such as at least  
seven cats, could be represented [Cat: @≤7] and defined with a version of set theory added 
to the base logic. But quantifiers such as considerably more would require some method of 
approximate reasoning, such as fuzzy sets or rough sets. 

• Indexicals.  Peirce observed that every statement in logic requires at least one indexical to fix 
the referents of its symbols. The basic indexical, which corresponds to the definite article the, is 
represented by the symbol # inside a concept node:  [Dog: #] would represent the phrase the 
dog. The pronouns I, you, and she would be represented [Person: #I], 
[Person: #you], and [Person: #she]. To process indexicals, some linguists propose 
versions of dynamic semantics, in which the model is updated during the discourse. A simpler 
method is to treat the # symbol as a syntactic marker that indicates a incomplete interpretation 
of the original sentence. With this approach, the truth value of a CG that contains any 
occurrences of # is not determined until those markers are replaced by names or coreference 
labels. This approach supports indexicals in an intermediate representation, but uses a 
conventional model theory to evaluate the final resolution. 

• Plural nouns.  Plurals have been represented in CGs by set expressions inside the concept 
boxes.  The concept [Cat: {*}@3] would represent three cats, and [Dog: {Lucky, 



Macula}] would represent the dogs Lucky and Macula.  Various methods have been proposed 
for representing distributed and collective plurals and translating them to versions of set theory 
and mereology. 

Simple versions of these features have been implemented in CG systems. The difficult issues involve 
generalizing them in a systematic way to cover all the variations that occur in natural languages. 

5. Ongoing Research
The major difference between natural languages and formal languages is not in the notation. For the 
world’s first formal logic, Aristotle used a subset of Greek. Some computer systems use a controlled 
natural language based on a formally defined subset of a natural language. The defining characteristic 
of a formal language is that the meaning of any statement is completely determined by its form or 
syntax. Natural languages, however, are highly context dependent. Ambiguities and indexicals are two 
kinds of dependencies that have been thoroughly analyzed, but vagueness is more challenging. Peirce 
(1902:748) defined vagueness in an article for Baldwin’s Dictionary of Philosophy and Psychology: 

A proposition is vague when there are possible states of things concerning which it is 
intrinsically uncertain whether, had they been contemplated by the speaker, he would have 
regarded them as excluded or allowed by the proposition. By intrinsically uncertain we 
mean not uncertain in consequence of any ignorance of the interpreter, but because the 
speaker’s habits of language were indeterminate. 

In other writings, Peirce explained that a vague statement requires some additional information to make 
it precise, but the sentence itself gives little or no indication of what kind of information is missing. 
That characteristic distinguishes vagueness from the ambiguity illustrated in Figure 18. An ambiguous 
sentence has two or more interpretations, and the kind of information needed to resolve the ambiguity 
can usually be determined by analyzing the sentence itself. An indexical is a word or phrase, such as 
she or the book, whose referent is not specified, but the kind of thing that would serve as a referent and 
the means of finding it are usually determined. But the meaning of a vague sentence, as Peirce 
observed, is “intrinsically uncertain” because the method for finding the missing information is 
unknown, perhaps even to the speaker. 

Peirce’s definition is compatible with an approach to vagueness by the logical methods of 
underspecification and supervaluation. As an example, the graph on the left of Figure 18 is 
underspecified because it is true in all three of the interpretations of the sentence Tom believes that  
Mary wants to marry a sailor.  The graph on the right is the most specific because it is true in only one 
interpretation.  CGs represent indexicals with underspecified concepts such as [Person: #she] for 
she and [Book: #] for the book, whose referents could later be resolved by the methods of discourse 
representation theory. To accommodate the truth-value gaps of vague sentences that are neither true nor 
false, van Fraassen (1966) proposed supervaluation as a model-theoretic method that allows some 
sentence p to have an indeterminate truth value in a specific model. But other sentences, such as p ~∨ p 
would have a supervalue of true in all models, while the sentence p ~∧ p would have the supervalue 
false in all models. 

For language understanding, Hintikka (1973:129) observed that infinite families of models might be 
theoretically interesting, but “It is doubtful whether we can realistically expect such structures to be 
somehow actually involved in our understanding of a sentence or in our contemplation of its meaning.” 
As an alternative, he proposed a surface model of a sentence S as “a mental anticipation of what can 
happen in one’s step-by-step investigation of a world in which S is true.”  Instead of a logic of 



vagueness, Hintikka suggested a method of constructing a model that would use all available 
information to fill in the details left indeterminate in a given text.  The first stage of constructing a 
surface model begins with the entities occurring in a sentence or story.  During the construction, new 
facts may be asserted that block certain extensions or facilitate others.  A conventional model is the 
limit of a surface model that has been extended infinitely far, but such infinite processes are not 
required for normal understanding. 

After forty years, supervaluations are still widely used by logicians, but Fodor and Lepore (1996) 
denounced them as useless for linguistics and psychology.  Surface models, although largely neglected, 
can be constructed by constraint satisfaction methods similar to the heuristic techniques in AI and 
dynamic semantics in linguistics.  Conceptual graphs are convenient for such methods because they can 
be used to represent arbitrary statements in logic, to represent formal models of those statements, and to 
represent each step from an initially vague statement to a complete specification. Any Tarski-style 
model, for example, can be represented as a potentially infinite simple graph, whose only logical 
operators are conjunction and existential quantification. Each step in constructing a surface model is a 
subgraph of a potentially infinite complete model, but for most applications, there is no need to finish 
the construction. Such techniques have been successfully used for understanding dialogs, in which 
fragments of information from multiple participants must be assembled to construct a larger view of a 
subject. 

Implementations, in either computers or neurons, can exploit the topological properties of graphs, 
which include symmetry, duality, connectivity, and cycles. For knowledge representation, the topology 
often reveals similarities that are masked by different choices of ontology. Figure 19 shows two 
different ways of representing the sentence Sue gives a child a book. The CG on the left represents the 
verb by a triadic relation, while the one on the right represents it by a concept linked to three dyadic 
relations:  agent, theme, and recipient. Different ontologies lead to different numbers of concept and 
relation nodes with different type labels, but a characteristic invariant of giving is the triadic 
connectivity of three participants to a central node. 

 

Figure 19.  Two ways of representing an act of giving 

Although the relation type Gives and the concept type Give have similar names, concept nodes and 
relation nodes cannot be directly mapped to one another. But when the topology is analyzed, adjacent 
nodes can be merged to reduce the size of the graphs while preserving invariants such as cycles and 
connectivity.  The invariants can indicate common underlying relationships expressed with different 
ontologies. Sowa and Majumdar (2003) presented a more complex example that compared one CG 
derived from a relational database to another CG derived from an English sentence, both of which 
represented the same physical structure.  The database CG had 15 concept nodes and 9 relation nodes, 
but the CG from English had 12 concept nodes and 11 relation nodes.  Furthermore, no type label on 
any node of one CG was identical to any type label on any node of the other. Given only the constraint 
that five concept nodes of each CG referred to the same five objects, the algorithms correctly derived 
the mappings from one ontology to the other. Those mappings could then be used to compare other 



representations with the same two ontologies. Ongoing research on methods for representing graphs 
has led to high-performance algorithms for searching, comparing, and transforming large numbers of 
very large graphs. 

As an example of applied research, one of the largest commercial CG systems is Sonetto (Sarraf & 
Ellis 2006), which uses extended versions of earlier algorithms by Levinson and Ellis (1992). A key 
innovation of Sonetto is its semi-automated methods for extracting ontologies and business rules from 
unstructured documents. The users who assist Sonetto in the knowledge extraction process are familiar 
with the subject matter, but they have no training in programming or knowledge engineering. CGIF is 
the knowledge representation language for ontologies, rules, and queries. It is also used to manage the 
schemas of documents and other objects in the system and to represent the rules that translate CGIF to 
XML and other formats. For the early CG research, see the collections edited by Nagle et al. (1992), 
Way (1992), and Chein (1996). More recent research on CGs has been published in the annual 
proceedings of the International Conferences on Conceptual Structures. 

Appendix:  The Common Logic Standard
Common Logic (CL) evolved from two projects to develop parallel ANSI standards for conceptual 
graphs and the Knowledge Interchange Format (Genesereth & Fikes 1992). Eventually, those projects 
were merged into a single ISO project to develop a common abstract syntax and model-theoretic 
foundation for a family of logic-based notations (ISO/IEC 24707). Hayes and Menzel (2001) defined a 
very general model theory for CL, which Hayes and McBride (2003) used to define the semantics for 
the languages RDF(S) and OWL. In addition to the abstract syntax and model theory, the CL standard 
specifies three concrete dialects that are capable of expressing the full CL semantics:  the Common 
Logic Interchange Format (CLIF), the Conceptual Graph Interchange Format (CGIF), and the XML-
based notation for CL (XCL). Since the semantics of RDF and OWL is based on a subset of CL 
semantics, those languages can also be considered dialects of CL:  any statement in RDF or OWL can 
be translated to CLIF, CGIF, or XCL, but only a subset of CL can be translated back to RDF or OWL. 

The CL syntax allows quantifiers to range over functions and relations, but CL retains a first-order style 
of model theory and proof theory.  To support a higher-order syntax, but without the computational 
complexity of higher-order semantics, the CL model theory uses a single domain D that includes 
individuals, functions, and relations.  The option of limiting the domain of quantification to a single set 
was suggested by Quine (1954) and used in various theorem provers that allow quantifiers to range 
over relations (Chen et al., 1993). 

The CL standard is defined in an abstract syntax that is independent of any concrete notation. It does, 
however, support the full Unicode character set and the URIs of the Semantic Web. The three dialects 
defined in the standard (CLIF, CGIF, and XCL) use only the ASCII subset of Unicode for their basic 
syntax, but they allow any Unicode symbols in names and character strings. Although CGIF and CLIF 
had different origins, the two notations have many similarities. As an example, following is the core 
CGIF for the sentence Bob drives his Chevy to St. Louis: 
   [*x] [*y]
   (Drive ?x) (Person Bob) (City "St. Louis") (Chevy ?y)
   (Agnt ?x Bob) (Dest ?x "St. Louis") (Thme ?x ?y) (Poss Bob ?y)
In core CGIF, the concept nodes [*x] and [*y] represent the existential quantifiers ∃x and ∃y. 
Following is the CLIF statement, which uses the keyword exists to introduce a list of existentially 
quantified variables: 



   (exists (x y)
      (and (Drive x) (Person Bob) (City "St. Louis") (Chevy y)
           (Agnt x Bob) (Dest x "St. Louis") (Thme x y) (Poss Bob y) ))
Although CGIF and CLIF look similar, there are several fundamental differences: 

1. Since CGIF is a serialized representation of a graph, labels such as x or y represent coreference 
links between nodes, but they represent variables in CLIF or predicate calculus. 

2. CGIF distinguishes the labels *x and ?x from a name like Bob by an explicit prefix. CLIF, 
however, has no special markers on variables; the only distinction is that variables appear in a 
list after the quantifier. 

3. Since the nodes of a graph have no inherent ordering, a CGIF sentence is an unordered list of 
nodes. Unless grouped by context brackets, the list may be permuted without affecting the 
semantics. 

4. The CLIF operator and does not occur in CGIF because the conjunction of nodes within any 
context is implicit. Omitting the conjunction operator in CGIF tends to reduce the number of 
parentheses. 

Extended CGIF allows monadic relation names to be used as type labels, and extended CLIF allows 
them to be used as restrictions on the scope of quantifiers. Following is the extended CGIF for the 
above sentence: 
   [Drive *x] [Person: Bob] [City: "St. Louis"] [Chevy *y]
   (Agnt ?x Bob) (Dest ?x "St. Louis") (Thme ?x ?y) (Poss Bob ?y)
And following is the equivalent in extended CLIF: 
   (exists ((x Drive) (y Chevy))
      (and (Person Bob) (City "St. Louis") (Agnt x Bob)
      (Dest x "St. Louis") (Thme x y) (Poss Bob y) ))
Since the semantics of any statement in extended CGIF and CLIF is defined by its translation to the 
core language, neither language makes a semantic distinction between type labels and monadic 
relations. If a statement in a strongly typed language, such as the Z Specification Language, is 
translated to CGIF or CLIF, the Z types are mapped to CGIF type labels or CLIF quantifier restrictions. 
A syntactically correct statement in Z and its translation to CGIF or CLIF have the same truth value. 
But an expression with a type mismatch would cause a syntax error in Z, but it would merely be false 
in CGIF or CLIF. 

As another example, Figure 20 shows a CG for the sentence If a cat is on a mat, then it is a happy pet. 
The dotted line that connects the concept [Cat] to the concept [Pet], which is called a coreference 
link, indicates that they both refer to the same entity. The Attr relation indicates that the cat, also 
called a pet, has an attribute, which is an instance of happiness. 

 

Figure 20.  CG display form for If a cat is on a mat, then it is a happy pet. 



The dotted line in Figure 20, called a coreference link, is shown in CGIF by the defining label *x in the 
concept [Cat: *x] and the bound label ?x in [Pet: ?x]. Following is the extended CGIF: 
   [If: [Cat *x] [Mat *y] (On ?x ?y)
      [Then: [Pet ?x] [Happy *z] (Attr ?x ?z) ]]
In CGs, functions are represented by conceptual relations called actors. Figure 21 is the CG display 
form for the following equation written in ordinary algebraic notation: 
   y = (x + 7)/sqrt(7)
The three functions in this equation would be represented by three actors, which are shown in Figure 21 
as diamond-shaped nodes with the type labels Add, Sqrt, and Divide. The concept nodes contain 
the input and output values of the actors.  The two empty concept nodes contain the output values of 
Add and Sqrt. 

 

Figure 21.  CL functions represented by actor nodes 

In CGIF, actors are represented as relations with two kinds of arcs:  a sequence of input arcs separated 
by a vertical bar from a sequence of output arcs. 
   [Number: *x] [Number: *y] [Number: 7]
   (Add ?x 7 | [*u]) (Sqrt 7 | [*v]) (Divide ?u ?v | ?y)
In the display form, the input arcs of Add and Divide are numbered 1 and 2 to indicate the order in 
which the arcs are written in CGIF. Following is the corresponding CLIF: 
   (exists ((x Number) (y Number))
      (and (Number 7) (= y (Divide (Add x 7) (Sqrt 7)))))
No CLIF variables are needed to represent the coreference labels *u and *v since the functional 
notation used in CLIF shows the connections directly. 

CLIF only permits functions to have a single output, but extended CGIF allows actors to have multiple 
outputs. The following actor of type IntegerDivide has two inputs:  an integer x and an integer 7. 
It also has two outputs:  a quotient u and a remainder v. 
   (IntegerDivide [Integer: *x] [Integer: 7] | [*u] [*v])
When this actor is translated to core CGIF or CLIF, the vertical bar is removed, and the actor becomes 
an ordinary relation with four arguments; the distinction between inputs and outputs is lost. In order to 
assert the constraint that the last two arguments are functionally dependent on the first two arguments, 
the following CGIF sentence asserts that there exist two functions, identified by the coreference labels 
Quotient and Remainder, which for every combination of input and output values are logically 
equivalent to an actor of type IntegerDivide with the same input and output values: 
   [Function: *Quotient] [Function: *Remainder]
   [[@every*x1] [@every*x2] [@every*x3] [@every*x4]
   [Equiv: [Iff: (IntegerDivide ?x1 ?x2 | ?x3 ?x4)]
           [Iff: (#?Quotient ?x1 ?x2 | ?x3) (#?Remainder ?x1 ?x2 | ?x4)]]]



Each line of this example illustrates one or more features of CGIF. The first line represents existential 
quantifiers for two entities of type Function. On the second line, the context bracket [ encloses the 
concept nodes with universal quantifiers, marked by @every, to show that the existential quantifiers 
for Quotient and Remainder include the universals within their scope. The equivalence on lines 
three and four shows that an actor of type IntegerDivide is logically equivalent to a conjunction of 
the quotient and remainder functions. Finally, the symbol # on line four shows that the coreference 
labels ?Quotient and ?Remainder are being used as type labels. Following is the corresponding 
CLIF: 
   (exists ((Quotient Function) (Remainder Function))
      (forall (x1 x2 x3 x4)
         (iff (IntegerDivide x1 x2 x3 x4)
              (and (= x3 (Quotient x1 x2)) (= x4 (Remainder x1 x2))))))
As another example of quantifiers that range over relations, someone might say “Bob and Sue are 
related,” but not say exactly how they are related. The following sentences in CGIF and CLIF state that 
there exists some familial relation r that relates Bob and Sue: 
   [Relation: *r] (Familial ?r) (#?r Bob Sue)
   (exists ((r Relation)) (and (Familial r) (r Bob Sue)))
The concept [Relation: *r] states that there exists a relation r.  The next two relations state that r 
is familial and r relates Bob and Sue. 

This brief survey has illustrated nearly every major feature of CGIF and CLIF. One important feature 
that has not been mentioned is a sequence marker to support relations with a variable number of 
arguments. Another is the use of comments, which can be placed before, after, or inside any concept or 
relation node in CGIF. The specifications in the CL standard guarantee that any sentence expressed in 
the dialects CGIF, CLIF, or XCL can be translated to any of the others in a logically equivalent form. 
Although the translation will preserve the semantics, it is not guaranteed to preserve all syntactic 
details:  a sentence translated from one dialect to another and then back to the first will be logically 
equivalent to the original, but some subexpressions might be reordered or replaced by semantic 
equivalents. Following is a summary of the CGIF grammar; see ISO/IEC 24707 for the complete 
specification of the Common Logic syntax and semantics. 

Lexical Grammar Rules
The syntax rules are written in Extended Backus-Naur Form (EBNF) rules, as specified by ISO/IEC 
14977.  The CGIF syntax rules assume the same four types of names as CLIF:  namecharsequence 
for names not enclosed in quotes; enclosedname for names enclosed in double quotes; numeral 
for numerals consisting of one or more digits; and quotedstring for character strings enclosed in 
single quotes. But because of syntactic differences between CGIF and CLIF, CGIF must enclose more 
names in quotes than CLIF in order to avoid ambiguity. Therefore, the only CG names not enclosed in 
quotes belong to the categories identifier and numeral. 
   CGname = identifier | '"', (namecharsequence - identifier), '"'
            | numeral | enclosedname | quotedstring;
   identifier = letter, {letter | digit | "_"};
When CGIF is translated to CL, a CG name is translated to a CLIF name by removing any quotes 
around a name character sequence.  CLIF does not make a syntactic distinction between constants and 
variables, but in CGIF any CG name that is not used as a defining label or a bound label is called a 



constant. The start symbol of CGIF syntax is the category text for a complete text or the category CG 
for just a single conceptual graph. 

Core CGIF Grammar Rules
An actor is a conceptual relation that represents a function in Common Logic.  It begins with (, an 
optional comment, an optional string #?, a CG name, |, an arc, an optional end comment, and ).  If 
the CG name is preceded by #?, it represents a bound coreference label; otherwise, it represents a type 
label.  The arc sequence represents the arguments of the CL function and the last arc represents the 
value of the function. 
   actor = "(", [comment], ["#?"], CGname, arcSequence, "|", arc,
                [endComment], ")";
An arc is an optional comment followed by a reference. It links an actor or a conceptual relation to a 
concept that represents one argument of a CL function or relation. 
   arc = [comment], reference;
An arc sequence is a sequence of zero or more arcs, followed by an option consisting of an optional 
comment, ?, and a sequence marker. 
   arcSequence = {arc}, [[comment], "?", seqmark];
A comment or an end comment is a character string that has no effect on the semantics of a conceptual 
graph or any part of a conceptual graph.  A comment begins with "/*", followed by a character string 
that contains no occurrence of "*/", and ends with "*/".  A comment may occur immediately after 
the opening bracket of any concept, immediately after the opening parenthesis of any actor or 
conceptual relation, immediately before any arc, or intermixed with the concepts and conceptual 
relations of a conceptual graph.  An end comment begins with ;, followed by a character string that 
contains no occurrence of ] or ).  An end comment may occur immediately before the closing bracket 
of any concept or immediately before the closing parenthesis of any actor or conceptual relation. 
   comment = "/*", {(character-"*") | ["*", (character-"/")]}, ["*"], "*/";
   endComment = ";", {character - ("]" | ")")};
A concept is either a context, an existential concept, or a coreference concept. Every concept begins 
with [ and an optional comment; and every concept ends with an optional end comment and ]. 
Between the beginning and end, a context contains a CG; an existential concept contains * and either a 
CG name or a sequence marker; and a coreference concept contains : and a sequence of one or more 
references.  A context that contains a blank CG is said to be empty, even if it contains one or more 
comments; any comment that occurs immediately after the opening bracket shall be part of the concept, 
not the following CG. 
   concept = "[", [comment],
              (CG | "*", (CGname | seqmark) | ":", {reference}- ),
              [endComment], "]";
A conceptual graph (CG) is an unordered list of concepts, conceptual relations, negations, and 
comments. 
   CG = {concept | conceptualRelation | negation | comment};
A conceptual relation is either an ordinary relation or an actor. An ordinary relation, which represents a 
CL relation, begins with (, an optional comment, an optional string #?, a CG name, an optional end 



comment, and ). If the CG name is preceded by #?, it represents a bound coreference label; otherwise, 
it represents a type label.  An ordinary relation has just one sequence of arcs, but an actor has two 
sequences of arcs. 
   conceptualRelation = ordinaryRelation | actor;
   ordinaryRelation = "(", [comment], ["#?"], CGname, arcSequence,
                           [endComment], ")";
A negation is ~ followed by a context. 
   negation = "~", context;
A reference is an optional ? followed by a CG name.  A CG name prefixed with ? is called a bound 
coreference label; without the prefix ?, it is called a constant. 
   reference = ["?"], CGname;
A text is a context, called an outermost context, that has an optional name, has an arbitrarily large 
conceptual graph, and is not nested inside any other context.  It consists of [, an optional comment, the 
type label Proposition, :, an optional CG name, a conceptual graph, an optional end comment, 
and ].  Although a text may contain core CGIF, the type label Proposition is outside the syntax of core 
CGIF. 
   text = "[", [comment], "Proposition", ":", [CGname], CG,
               [endComment], "]";

Extended CGIF Grammar Rules
Extended CGIF is superset of core CGIF, and every syntactically correct sentence of core CGIF is also 
syntactically correct in extended CGIF.  Its most prominent feature is the option of a type label or a 
type expression on the left side of any concept.  In addition to types, extended CGIF adds the following 
features to core CGIF: 

• More options in concepts, including universal quantifiers. 

• Boolean contexts for representing the operators or, if, and iff. 

• The option of allowing concept nodes to be placed in the arc sequence of conceptual relations. 

• The ability to import text into a text. 

These extensions are designed to make sentences more concise, more readable, and more suitable as a 
target language for translations from natural languages and from other CL dialects, including CLIF. 
None of them, however, extend the expressive power of CGIF beyond the CG core, since the semantics 
of every extended feature is defined by its translation to core CGIF, whose semantics is defined by its 
translation to the abstract syntax of Common Logic. 

The following grammar rules of extended CGIF have the same definitions as the core CGIF rules of the 
same name:  arcSequence, conceptualRelation, negation, ordinaryRelation, 
text. The following grammar rules of extended CGIF don’t occur in core CGIF, or they have more 
options than the corresponding rules of core CGIF:  actor, arc, boolean, CG, concept, 
eitherOr, equivalence, ifThen, typeExpression. 

An actor in extended CGIF has the option of zero or more arcs following | instead of just one arc. 
   actor = "(", [comment], ["#?"], CGname,
           arcSequence, "|", {arc}, [endComment], ")";



An arc in extended CGIF has the options of a defining coreference label and a concept in addition to a 
bound coreference label. 
   arc = [comment], (reference | "*", CGname | concept);
A boolean is either a negation or a combination of negations that represent an either-or construction, an 
if-then construction, or an equivalence. Instead of being marked with ~, the additional negations are 
represented as contexts with the type labels Either, Or, If, Then, Equiv, Equivalence, or 
Iff. 
   boolean = negation | eitherOr | ifThen | equivalence;
A concept in extended CGIF permits any combination allowed in core CGIF in the same node and it 
adds two important options:  a type field on the left side of the concept node, and a universal quantifier 
on the right. Four options are permitted in the type field:  a type expression, a bound coreference label 
prefixed with "#", a constant, or the empty string; a colon is required after a type expression, but 
optional after the other three. 
   concept = "[", [comment],
             ( (typeExpression, ":"
               | ["#?"], CGname, [":"]),
               [["@every"], "*", CGname], {reference}, CG
             | ["@every"], "*", seqmark
             ), [endComment], "]";
A conceptual graph (CG) in extended CGIF adds Boolean combinations of contexts to core CGIF. 
   CG = {concept | conceptualRelation | boolean | comment};
An either-or is a negation with a type label Either that contains zero or more negations with a type 
label Or. 
   eitherOr = "[", [comment], "Either", [":"],
                   {"[", [comment], "Or", [":"], CG, [endComment], "]"}
                   [endComment], "]";
An equivalence is a context with a type label Equivalence or Equiv that contains two contexts 
with a type label Iff.  It is defined as a pair of if-then constructions, each with one of the iff-contexts 
as antecedent and the other as consequent. 
   equivalence = "[", [comment], ("Equivalence" | "Equiv"), [":"],
                     "[", [comment], "Iff", [":"], CG, [endComment], "]",
                     "[", [comment], "Iff", [":"], CG, [endComment], "]",
                      [endComment], "]";
An if-then is a negation with a type label If that contains a negation with a type label Then. 
   ifThen = "[", [comment], "If", [":"], CG,
                   "[", [comment], "Then", [":"], CG, [endComment], "]",
                   [endComment], "]";
A type expression is a lambda-expression that may be used in the type field of a concept. The symbol @ 
marks a type expression, since the Greek letter λ is not available in the ASCII subset of Unicode. 
   typeExpression = "@", "*", CGname, CG;
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