
From Existential Graphs to Conceptual Graphs

John F. Sowa

VivoMind Research, LLC

Abstract.  Existential graphs (EGs) are a simple, readable, and expressive graphic notation for logic.  
Conceptual graphs (CGs) combine a logical foundation based on EGs with features of the semantic 
networks used in artificial intelligence and computational linguistics.  CG design principles address 
logical, linguistic, and cognitive requirements:  a formal semantics defined by the ISO standard for 
Common Logic; the flexibility to support the expressiveness, context dependencies, and metalevel 
commentary of natural language; and cognitively realistic operations for reasoning by induction, 
deduction, abduction, and analogy.  To accommodate the vagueness and ambiguities of natural 
language, informal heuristics can supplement the formal semantics.  With sufficient background 
knowledge and a clarifying dialog, informal graphs can be refined to any degree of precision.  Peirce 
claimed that the rules for reasoning with EGs generate “a moving picture of the action of the mind      
in thought.”  Some philosophers and psychologists agree:  Peirce’s diagrams and rules are a good 
candidate for a natural logic that reflects the neural processes that support thought and language.    
They are psychologically realistic and computationally efficient.

This is a revised preprint of an article that appeared in the International Journal of Conceptual 
Structures, vol 1, no 1.  Some additional references and URLs are added at the end.

1. Languages and Diagrams for Logic
Existential graphs and the conceptual graphs based on them are formally defined, but they follow the 
long tradition of deriving logical patterns from language patterns.  For the first formal logic, Aristotle 
developed a stylized or controlled version of natural language (NL).  To clarify the references and 
reduce ambiguity, he replaced pronouns with letters.  For his Elements of Geometry, Euclid followed 
Aristotle’s conventions as far as he could.  When he needed more expressive power, Euclid added 
diagrams and a broader range of language patterns.  Controlled Greek was the first CNL, but logicians 
and mathematicians translated it to controlled Latin, Arabic, and other languages.  Over the centuries, 
they abbreviated words and phrases with various symbols and organized them in diagrams.  The plus 
sign +, for example, is a simplified ampersand &, which abbreviated a hand-written et in Latin.  The 
oldest surviving type hierarchy is the Tree of Porphyry from the third century AD. 

In the 19th century, George Boole (1854) presented his laws of thought as an algebra for propositional 
logic:  1 for truth; 0 for falsehood; + for or; × for and; and − for not.  Thirty years later, Gottlob Frege 
and Charles Sanders Peirce independently developed notations for first-order logic (FOL).  Frege 
(1879) invented tree diagrams for representing FOL, but nobody else adopted his notation.  Peirce 
added n-adic relations to Boolean algebra in 1870, introduced quantifiers in 1880, and extended the 
algebraic notation to both first-order and higher-order logic in 1885.  Giuseppe Peano (1889) adopted 
Peirce’s algebra and changed some of the symbols to create the modern notation for predicate calculus. 
But in 1896, Peirce invented existential graphs (EGs) as a more diagrammatic notation for “the atoms 
and molecules of logic.” 

As an example, the English sentence A cat is on a mat and a controlled English version would be 
identical.  Since Boolean algebra cannot represent the details of relations and quantifiers, it can only 
represent the full proposition by a single unanalyzed letter p.  For his relational algebra of 1870,   



Peirce invented a notation for the details at the word and phrase level:  Cati for a cat i, Matj for a mat j, 
and Oni,j for something i on something j.  Then the conjunction (Cati • Oni,j • Matj) can be read as an 
abbreviation for A cat i is on a mat j, but Peirce did not have a systematic way of handling quantifiers.  
In 1880, while he was revising his father’s book on linear algebra, Peirce noticed that the Greek letters 
Σ for repeated addition and Π for repeated multiplication could be adapted to logic:  the existential 
quantifier corresponds to repeated or, and the universal quantifier corresponds to repeated and.  With 
existential quantifiers in front, the following formula represents the sentence There exists something i, 
there exists something j, i is a cat, i is on j, and j is a mat: 

Σi Σj Cati • Oni,j • Matj 

Since Peano wanted to mix mathematical and logical symbols in the same formulas, he invented new 
symbols by turning letters upside down or backwards. He replaced Boole’s + for or with  for the ∨
Latin vel, and he turned  upside down for ∨ and. For the existential quantifier, he turned E backwards 
for .  With these symbols, Peano’s version of Peirce’s formula becomes ∃

∃i ∃j Cat(i)  On(∧ i,j)  Mat(∧ j) 

The developments from Boole to Peirce to Peano continued the Aristotelian tradition of relating 
language to logic. But Frege (1879) had a low opinion of natural language.  His goal was “to break the 
domination of the word over the human spirit by laying bare the misconceptions that through the use  
of language often almost unavoidably arise concerning the relations between concepts.”  For his 
Begriffsschrift (concept writing), Frege used only the operators that occur in his rules of inference:  
assertion (vertical line), negation (short vertical line), universal quantifier (cup that contains a variable),
and implication (hook).  Figure 1 represents A cat is on a mat with Frege’s operators. 

 

Figure 1.  Begriffsschrift for A cat is on a mat. 

At the left of Figure 1, the vertical line asserts the entire diagram. The short vertical lines represent not, 
the cups represent for every, and the hooks represent if-then.  With these operators, the diagram may be
read It is false that for every x, for every y, if x is a cat, then if y is a mat, then x is not on y . 

 

Figure 2.  Existential graph for A cat is on a mat. 

By contrast, Peirce’s existential graph in Figure 2 expresses the sentence with a minimum of symbols. 
The character strings name the relations; the two bars, which Peirce called lines of identity, represent 
existential quantifiers; the and operators are implicit. For negation, Peirce used an oval enclosure, as 
illustrated in Figure 3.  A negative area (shaded) is nested in an odd number of negations.  A positive 
area (not shaded) is nested in an even number of negations, possibly zero. 

 

Figure 3.  EGs for the Aristotelian sentence patterns 



Figure 3 shows how EGs represent the four sentence patterns of Aristotelian syllogisms.  Without 
negations, the EG on the left says Some cat is black.  An oval that negates that EG says It is false that 
some cat is black. This is equivalent to saying No cat is black.  An oval that negates only the relation 
Black says Some cat is not black.  By negating that EG, the rightmost EG says It is false that some cat 
is not black.  This is equivalent to saying No cat is not black or Every cat is black.  But a shaded area 
that contains a nested white area can be read if-then.  With that option, the rightmost EG can also be 
read If there is a cat, then it is black.  As Figure 3 shows, an EG can serve as the canonical form that 
represents the underlying logical structure of one or more English sentences.

When combined in all possible ways, conjunction, negation, and lines of identity can represent all the 
operators of first-order logic.  One more feature is needed to represent full FOL with equality:  the 
option of connecting two or more lines.  Figure 4 shows the pattern for either-or:  two or more white 
areas nested in a shaded area.  The EG on the left has two lines of identity, each nested in one of the 
alternatives.  It says Either there is a cat or there is a dog.  The EGs in the middle and the right add 
ligatures of connected lines of identity. Each ligature could be analyzed as a connection of five separate
lines, each with its own existential quantifier, and all related by equal signs.  As a result of those 
equalities, the only quantifier that determines the meaning is the outermost one. For the middle EG in 
Figure 4, the line outside the nest says There is something. The connections to the inner areas say It is 
either a cat or a dog. For the rightmost EG, the outermost quantifier is in a negative area, where it has 
the effect of a universal quantifier:  Everything is either a cat or a dog. That same EG could also be 
read If there is something, then either it is a cat or it is a dog. 

 

Figure 4.  Ligatures that connect lines of identity 

Different branches of a ligature might represent different individuals. Figure 5 shows a ligature that can
be analyzed as three lines of identity. The outermost area, which Peirce called the sheet of assertion, 
contains a line x attached to the monadic relation God. The shaded area contains a line y and another 
copy of the relation God. The white area nested two levels deep contains a third line z that is connected 
to lines x and y.  Altogether, Figure 5 can be translated to the formula 

x God(x)  ~( y God(y)  ~( z z=x  z=y)). ∃ ∧ ∃ ∧ ∃ ∧

The expression ~( z z=x  z=y) can be simplified to just ~(x=y).  With this simplification, the EG can ∃ ∧
be read There is a God x, and it is false that there is a God y that is not the same as x. Since a shaded 
area with a nested white area can be read if-then, the EG can also be read There is a God x, and if there
is a God y, then x is y. Both sentences are equivalent to saying There is one and only one God. 

 

Figure 5.  EG for the sentence There is one and only one God 

As these examples show, EGs are based on three graphic elements:  lines of identity that show 
existence and connectivity, character strings that name relations, and ovals that negate the enclosed 
graphs or subgraphs.  Conjunction is represented by the convention that two or more graphs or parts   



of graphs in the same area are linked by and.  Equality is represented by connecting two or more lines.  
No special symbols are needed for other operators because their graphic patterns can be seen directly: 

• If-then:  A shaded area with a nested white area can be seen and read as if... then.... 

• Either-or:  A shaded area with two or more nested white areas can be seen and read as either... 
or... or.... 

• Some and every:  A line with its outermost point in a white area can be read as some or 
something.  With its outermost point in a shaded area, it can be read as every or everything. 

With practice, even more complex patterns can be seen at a glance.  In his original EG notation, Peirce 
did not use shading. To distinguish positive areas from negative areas, the reader had to count the levels
of nesting.  He later added shading to heighten the contrast and make the diagrams more iconic:  each 
pattern is an icon whose appearance directly shows the logical structure. 

Frege’s Begriffsschrift also has iconic aspects.  In Figure 1, for example, a cup symbol within the scope
of an odd number of negations can be read there exists.  A sequence of hooks preceded by a negation 
and followed by another negation can be read as repeated and.  With these conventions, Figure 1 can  
be read There exists an x, there exists a y, x is a cat, and y is a mat, and x is on y.  Frege recognized the 
importance of learning and using such patterns for reasoning, but he never encouraged anyone to read 
his notation as a controlled NL. 

The same notation can be more or less iconic with respect to different structures.  Frege designed his 
notation to support his rules of inference.  For the Principia Mathematica, Whitehead and Russell 
adopted Frege’s rules, but they used the Peirce-Peano algebra, whose structure is less clearly related to 
those rules.  For that reason, the algebra is less iconic than Begriffsschrift with respect to the rules of 
inference, but more iconic in its mapping to NLs. For existential graphs, Peirce discovered remarkably 
simple rules of inference stated in terms of the EG notation.  But the EG shading can be used to 
highlight positive and negative areas in other notations.  With shading to make them more iconic, 
algebraic formulas and even controlled NLs can be processed by Peirce’s rules. 

Conceptual graphs (CGs) inherit the semantics, operations, and iconic aspects of EGs (Sowa 1984).  
But they add innovations from the past century of research in cognitive science, especially linguistics 
and artificial intelligence.  The Conceptual Graph Interchange Format (CGIF) is a linearization of   
CGs specified by the ISO/IEC standard 24707 for Common Logic (CL).  But CGIF can also be used    
as a linearization of EGs and other graphic notations used in computer science and the Semantic Web. 
Common Logic is a highly expressive extension to FOL that supports quantification over propositions, 
relations, and functions while retaining a first-order style of proof theory. The Interoperable Knowledge
Language (IKL) is an extension of CL that supports metalanguage.  It can also be used to define 
versions of modal, nonmonotonic, and fuzzy logic. 

For artificial intelligence, the formal aspects of a notation are the basis for computation.  But the   
major challenge is to support reasoning with and about the informal richness, complexity, and often 
vagueness of human thought and language.  As logics, EGs and CGs are precise, but they can be used 
for representing and reasoning about NLs at the object level and the metalevel.  Metalevel reasoning 
can support a wide range of formal, informal, and heuristic methods for reasoning about statements     
at the object level.  Even when the object level is as vague or underspecified as an NL sentence, the 
metalevel can represent and reason about the background knowledge necessary to make the 
representation as clear and precise as necessary (Majumdar and Sowa 2009). 



2. Semantic Networks
Existential graphs have structural similarities to the semantic networks of artificial intelligence, the 
dependency graphs of linguistics, and the discourse representation structures by Hans Kamp (1981). 
Conceptual graphs combine EGs with features from those systems and from related research in logic 
and linguistics.  An important experience in Peirce’s career was his work as an associate editor of the 
Century Dictionary. He wrote, revised, or edited over 16,000 definitions — more than any other editor 
of that dictionary.  A letter he wrote to the general editor, B. E. Smith, shows how that experience 
affected his thinking: 

The task of classifying all the words of language, or what’s the same thing, all the ideas  
that seek expression, is the most stupendous of logical tasks.  Anybody but the most 
accomplished logician must break down in it utterly; and even for the strongest man,          
it is the severest possible tax on the logical equipment and faculty. 

Peirce scholars believe that the two decades after his work on the Century Dictionary were his most 
profound and fertile. During that period, he invented existential graphs and used them to anticipate and 
often improve on theories by later logicians, linguists, and philosophers (Houser 2005; Sowa 2006a). 

The dependency grammar by Lucien Tesnière (1959) was widely adopted in AI and computational 
linguistics.  Figure 6 shows Tesnière’s graph for an epigram by Voltaire about a certain literary critic:  
L’autre jour, au fond d’un vallon, un serpent piqua Jean Fréron (The other day, at the bottom of a 
valley, a snake stung Jean Fréron).  At the top is the verb piqua (stung); each word below it depends   
on the word to which it’s attached.  The bull’s eye symbol indicates an implicit preposition (à).  The 
conclusion of the epigram, which Tesnière also analyzed, was Que pensez-vous qu’il arriva? Ce fut     
le serpent qui creva (What do you think happened? It was the snake that died). 

 

Figure 6.  A dependency graph in Tesnière’s notation 

In Tesnière’s theory, un serpent and Jean Fréron represent participants that are essential to the action.  
The prepositional phrases specify the circumstances of the surrounding situation.  Dependency graphs 
can represent the same sentences as context-free grammars (Hays 1964), but their structure has a more 
direct mapping to the semantic networks of AI.  Roger Schank (1975) adopted dependency graphs,    
but emphasized concepts rather than words.  Figure 7 shows a conceptual dependency graph for the 
sentence A dog is greedily eating a bone.  Instead of Tesnière’s trees, Schank used graphs with various 
kinds of arrows:   for the agent-act relation and an arrow marked with ⇔ o for object or d for direction. 
He also replaced the words eat and greedily with labels for the concept types Ingest and Greedy. The 
subscript on Dog1 indicates coreference:  the bone went into the same dog that ingested it. 



 

Figure 7.  A Schankian conceptual dependency graph 

Although the early semantic networks were useful for computation, many of them did not have a 
formally defined semantics.  Woods (1975) proposed an important family of logic-based networks    
that evolved into description logics (DLs).  Brachman (1979) implemented the first version, called 
Knowledge Language One (KL-ONE).  As an example, Figure 8 shows a KL-ONE network that 
defines the concepts Truck and Trailer Truck as subtypes of Vehicle. 

 

Figure 8.  Truck and Trailer Truck concepts defined in KL-ONE 

The double arrows in the middle of Figure 8 show a branch of a concept hierarchy with Vehicle as a 
supertype of Truck, which is a supertype of Trailer Truck.  The concept Truck is defined as a subtype  
of Vehicle with the roles Unloaded Weight, Maximum Gross Weight, Cargo Capacity, and Number     
Of Wheels.  Each of those roles has a value restriction (v/r), which may be a primitive type, such as 
Integer, or a type defined elsewhere in the hierarchy, such as Weight Measure or Volume Measure.    
The concept Trailer Truck is a subtype of Truck, which inherits all the roles of Truck and adds a new 
role, Has Part, whose value is restricted to the type Trailer. For Truck, the value for Number of Wheels 
is variable, but it is restricted to 18 for Trailer Truck. 

Over the years, many versions of DLs have been designed, but their common core is based on the    
four sentence patterns of Aristotle’s syllogisms, as illustrated in the existential graphs of Figure 3.    
The subtype-supertype arrows of Figure 8 can be stated in universally quantified sentences with is as 
the verb:  Every truck is a vehicle. The roles can be stated in universally quantified sentences with has 
as the verb:  Every truck has a cargo capacity, which is a volume measure.  That complex sentence 
could be split in two to fit the Aristotelian patterns:  Every truck has a cargo capacity and Every cargo 
capacity is a volume measure.  Aristotelian sentences with negation can state constraints on the 
hierarchy:  No vehicle is an animal and Some vehicle is not a truck. 

The restriction arrow in Figure 8 requires a sentence pattern that goes beyond Aristotle:  Every trailer 
truck has a number of wheels, which is 18.  If this sentence were split in two, the connection between 
trailer trucks and the integer 18 would be lost.  With the restriction feature, KL-ONE supports a wider 



range of sentence patterns while preserving the simplicity of an Aristotelian style of reasoning.       
More recent DLs such as OWL use similar techniques to extend the Aristotelian paradigm. 

To support more expressive logics, Brachman, Fikes, and Levesque (1983) designed a hybrid reasoning
system called Krypton.  They used KL-ONE to define the terminology (T-box) and added an inference 
engine for first-order logic to make assertions and reason about them (A-box).  Schank and his 
colleagues also developed hybrid systems.  They used conceptual dependency graphs to represent NL 
semantics, and they wrote procedures in LISP to implement a wide range of applications.  Since then, 
hybrids that mix multiple declarative and procedural languages have been widely used for databases, 
knowledge bases, and the Semantic Web. 

A major challenge for hybrid systems is to define, combine, and relate the patterns of heterogeneous 
computer languages to each other and to the natural languages that people read, write, and speak.       
As Figures 1 and 2 show, logics with equivalent expressive power can vary widely in the structural 
patterns they support.  For example, the sentence If a farmer owns a donkey, then he beats it can be 
translated to the following formula in Peirce-Peano algebra: 

x y (farmer(x)  donkey(y)  owns(x,y))  beats(x,y) ∀ ∀ ∧ ∧ ⊃

In English, this formula can be read For every x and y, if x is a farmer who owns a donkey y, then x 
beats y.  This awkward paraphrase results from the rules for the scope of quantifiers.  In English and 
many other languages, an existential quantifier in the if clause of the sentence includes the then clause 
in its scope.  But quantifiers on the left side of the  operator do not include the right side in their ⊃
scope.  For a more direct mapping from language to logic, Kamp (1981) defined discourse 
representation structures (DRSs) with scoping rules similar to natural languages (Figure 9). 
Coincidentally, the EG and DRS logical structures are isomorphic. 

 

Figure 9.  EG and DRS for If a farmer owns a donkey, then he beats it. 

Kamp’s primitives are the same as Peirce’s:  the default and operator is omitted, and the default 
quantifier is existential.  DRS negation is represented by a box marked with the ¬ symbol, and 
implication is represented by two boxes.  As Figure 9 illustrates, nested EG ovals allow lines in the if 
oval to extend into the then oval. For DRS, Kamp made an equivalent assumption:  the quantifiers for x
and y in the if box govern x and y in the then box.  Since their structures are isomorphic and they use 
the same operators with the same scoping rules, the EG and DRS in Figure 9 can be translated to the 
same algebraic formula and the same Conceptual Graph Interchange Format (CGIF): 

~( x y farmer(x)  donkey(y)  owns(x,y)  ~beats(x,y)) ∃ ∃ ∧ ∧ ∧

~[ [*x] [*y] (farmer ?x) (donkey ?y) (owns ?x ?y) ~[ (beats ?x ?y) ] ] 

Like EG and DRS, CGIF does not use a symbol for and. The square brackets marked with the ~ symbol
represent EG ovals or DRS boxes.  The symbols [*x] and [*y] represent existential quantifiers; they 
map to EG lines of identity or DRS variables. Since the graphs do not have variables, the letters x and y
are called identifiers of coreference labels.  With an asterisk, *x is called the defining label, and each 
occurrence of ?x is a bound label within the scope of the defining label with the same identifier.  To 
represent full first-order logic with equality, only one more feature is needed:  a coreference node that 



shows a ligature of two or more lines. For example, the following CGIF represents the EG in Figure 5: 

[*x] (God ?x) ~[ [*y] (God ?y) ~[ [?x ?y] ] ] 

The coreference node [?x ?y] maps to the equality x=y in DRS. But a coreference node can contain any
number of bound labels:  [?x ?y ?z] is the equivalent of two equalities, x=y and y=z. 

 

Figure 10.  Untyped and Typed CGs for If a farmer owns a donkey, then he beats it. 

The display form of conceptual graphs uses nested boxes instead of ovals.  As in CGIF, a ~ symbol in 
front of a box indicates negation.  Figure 10 shows two conceptual graphs that are logically equivalent 
to the EG and DRS for the donkey sentence.  The CG on the left is untyped.  The two empty boxes, 
called concept nodes, represent existential quantifiers.  In CGIF, they map to [*x] and [*y]. The ovals 
represent relations, and the lines show connections between concept and relation nodes.  With these 
conventions, the untyped CG maps to the same formula and CGIF as the EG and DRS in Figure 9. 

The CG on the right of Figure 10 is typed. The boxes that contain the labels Farmer and Donkey are 
typed concept nodes that restrict the domain of the quantifiers by the monadic relations Farmer and 
Donkey.  In a typed algebraic notation, they map to the restricted existential quantifiers ( x:Farmer) ∃
and ( y:Donkey).   In CGIF, they map to [Farmer *x] and [Donkey *y].  Following are the typed ∃
algebra and the typed CGIF statements: 

~( x:Farmer)( y:Donkey)(Owns(x,y)  ~Beats(x,y)) ∃ ∃ ∧

~[ [Farmer *x] [Donkey *y] (Owns ?x ?y) ~[ (Beats ?x ?y) ] ] 

The CGs in Figure 10 represent the verbs owns and beats as dyadic relations.  Those relations, which 
are commonly used in DRS, can also be used in the EG or CG.  But Peirce noted that the event or state 
expressed by a verb is an entity that can be referenced by a quantified variable.  Davidson (1967) called
that option event semantics.  Figure 11 represents the state Own and the act Beat as entities linked to 
their participants by the linguistic case relations or thematic roles.  To enhance readability, the type 
labels If and Then can be used as synonyms for the ~ symbols that mark negated contexts. The relations
are Experiencer (Expr), Theme (Thme), Agent (Agnt), and Patient (Ptnt). 

 

Figure 11.  CG with case relations shown explicitly 

Following is the CGIF for Figure 11: 

[If [Farmer *x] [Own *y] [Donkey *z] (Expr ?y ?x) (Thme ?y ?z) 
     [Then [Beat *w] (Agnt ?w ?x) (Ptnt ?w ?y) ] ] 



The Common Logic Interchange Format (CLIF) uses a LISP-like notation to represent the same 
semantics: 

(not (exists ((x Farmer) (y Own) (z Donkey)) (and (Expr y x) (Thme y z) 
        (not (exists ((w Beat)) (and (Agnt w x) (Ptnt w y)))))))) 

CLIF and CGIF have the same model theoretic semantics, which is specified in the Common Logic 
standard.  CLIF syntax is specified in Annex A of the standard, and CGIF syntax in Annex B. 

3. Reasoning With Graphs
Graphs have advantages over linear notations in human factors, computational efficiency, and cognitive
representation.  For readability, graphs show relationships at a glance that are harder to see in linear 
notations. They also have a highly regular structure that can simplify many algorithms for reasoning, 
searching, indexing, and pattern matching.  With his BS degree in chemistry, Peirce was the first to 
recognize the similarity between chemical graphs and logical graphs. He adopted the chemical term 
valence for the number of arguments of a relation.  By applying algorithms for chemical graphs to 
conceptual graphs, Levinson and Ellis (1992) implemented the first type hierarchy that could support 
classification and retrieval in logarithmic time.  Further research on chemical graphs led to high-speed 
algorithms for indexing graphs and finding similar graphs (Rhodes et al. 2007).  Such techniques can 
find analogous graphs in logarithmic time (Sowa & Majumdar 2003). 

Conceptual graphs can be generated and transformed by a graph grammar based on three pairs of 
canonical formation rules.  Each rule transforms a CG or a pair of CGs u to a CG or pair of CGs v. 
Each transformation has one of three semantic effects:  equivalence, specialization, or generalization. 

• Equivalence.  Copy and simplify are equivalence rules, which generate a CG v that is logically 
equivalent to the original:  u⊃v and v⊃u. Equivalent graphs are true in the same models. 

• Specialization.  Join and restrict are specialization rules, which generate a CG v that implies the
original:  v⊃u. Specialization rules monotonically decrease the set of models in which the result
is true. 

• Generalization.  Detach and unrestrict are generalization rules, which generate a CG v that is 
implied by the original:  u⊃v. Generalization rules monotonically increase the set of models     
in which the result is true. 

Each rule has an inverse that can reverse any change it makes.   The inverse of copy is simplify,         
the inverse of restrict is unrestrict, and the inverse of join is detach. Combinations of these rules,   
called projection and maximal join, perform larger semantic operations for answering a question or 
interpreting a text.  Maximal joins determine the the unifiable overlap between two CGs.  In language 
processing, they help resolve ambiguities, find the antecedents of anaphoric references, and determine 
the most likely connections of new information to background knowledge.  The next three diagrams 
illustrate these rules with CGs that have no nested subgraphs. 



 

Figure 12.  Copy and simplify rules 

The CG at the top of Figure 12 represents the sentence The cat Yojo is chasing a mouse. The down 
arrow represents two applications of the copy rule. One application copies the Agnt relation, and a 
second copies the subgraph →(Thme)→[Mouse]. The dotted line connecting the two [Mouse] concepts
is a coreference link, which indicates that both concepts refer to the same individual. The up arrow 
represents two applications of the simplify rule, which performs the inverse operations of erasing 
redundant copies. Following is the CGIF for both graphs: 

[Cat: Yojo] [Chase: *x] [Mouse: *y] (Agent ?x Yojo) (Thme ?x ?y) 

[Cat: Yojo] [Chase: *x] [Mouse: *y] [Mouse: ?y] 
(Agent ?x Yojo) (Agent ?x Yojo) (Thme ?x ?y) (Thme ?x ?y) 

As the CGIF illustrates, the copy rule makes redundant copies, which are erased by the simplify rule.  
In effect, the copy rule is p (⊃ p∧p), and the simplify rule is (p∧p)⊃p. 

 

Figure 13.  Restrict and unrestrict rules 

The CG at the top of Figure 13 says A cat is chasing an animal.  By two applications of restrict, it        
is transformed to the CG for The cat Yojo is chasing a mouse.  In the first step, the concept [Cat] is 
restricted by referent to [Cat: Yojo], which says that there exists a cat named Yojo.  In the second step, 
the concept [Animal] is restricted by type to [Mouse].  The more specialized graph implies the more 
general one:  if the cat Yojo is chasing a mouse, then a cat is chasing an animal.  To show that the 
bottom graph v implies the top graph u, let c be a concept of u that is being restricted to a more 



specialized concept d, and let u be c∧w, where w is the remaining information in u.  By hypothesis, 
d⊃c.  Therefore, (d∧w) (⊃ c∧w).  Hence, v⊃u. 

 

Figure 14.  Join and detach rules 

At the top of Figure 14 are two CGs for the sentences Yojo is chasing a mouse and A mouse is brown. 
The join rule overlays the two identical copies of the concept [Mouse] to form a single CG for the 
sentence Yojo is chasing a brown mouse.  The detach rule undoes the join to restore the top graphs. 
Following are the CGIF sentences that represent the graphs in Figure 14: 

[Cat: Yojo] [Chase: *x] [Mouse: *y] (Agent ?x Yojo) (Thme ?x ?y) 
[Mouse: *z] [Brown: *w] (Attr ?z ?w) 

[Cat: Yojo] [Chase: *x] [Mouse: *y] (Agent ?x Yojo) (Thme ?x ?y) 
[Brown: *w] (Attr ?y ?w) 

As the CGIF illustrates, the effect of the join is to substitute y for every occurrence of z in the top graph
and erase redundant copies.  In general, every join assumes an equality of the form y=z and simplifies 
the result.  If q is the equality and u is the top pair of graphs, then the bottom graph is equivalent to 
q∧u, which implies u.  Therefore, the result of join implies the original graphs.  The six canonical 
formation rules define a generalization hierarchy of graphs whose only logical operators are existence 
and conjunction.  To support full first-order logic, additional rules are needed to handle negation. 

4. Peirce’s Rules of Inference
For existential graphs, Peirce defined a sound and complete proof procedure for FOL whose rules 
depend on whether an area is positive (unshaded) or negative (shaded).  To apply the rules to 
conceptual graphs and other notations for logic, the version by Peirce (1911) has been restated in   
terms of specialization and generalization.  The rules are grouped in three pairs:  one rule (i) inserts      
a graph, and the other (e) erases a graph.  The only axiom is a blank sheet of paper (an empty graph 
with no nodes).  The empty graph and any EG derived from it by Peirce’s rules is true in all models. 

1. (i) Insert:  In a negative area, any graph or subgraph (including the blank) may be replaced      
by any specialization. 

(e) Erase:  In a positive area, any graph or subgraph may be replaced by any generalization 
(including the blank). 

2. (i) Iterate:  Any graph or subgraph in any area c may be iterated (copied) in the same area c or 
into any area nested in c.  No graph may be copied directly into itself.  But it is permissible to 
copy a graph g in the same area c and then copy the copy into some area nested in the original g.

(e) Deiterate:  Any graph or subgraph that could have been derived by rule 2i may be erased. 



Whether or not the graph had been derived by 2i is irrelevant. 

3. (i) Double negation:  A double negation (nest of two negations with nothing between the inner 
and outer) may be drawn around any graph, subgraph, or set of graphs in any area.  In an EG, 
lines that originate outside a double negation and pass through it without a connection to 
anything in the area between the two negations are not considered part of that area.  In CGIF, 
those lines would not have any bound labels in the area between the outer ~[ and the inner ~[. 

(e) Double negation:  A double negation in any area may be erased. 

With adaptations for the variations in syntax, these same rules can be applied to EGs, CGs, and DRS   
in either CGIF or the original graph notations.  They can even be applied to the algebraic notation and 
controlled natural languages.  In EGs, the operation of inserting a link between two lines has the effect 
of identifying them (inserting an equality); erasing a link has the inverse effect of erasing an equality.  
In a linear notation, the operation of inserting or erasing an equality may require an additional 
operation of renaming labels. Since pure graph notations have no labels, there is nothing to rename. 

To illustrate the similarity between EG and DRS, consider the following pair of sentences:  Pedro is a 
farmer. He owns a donkey. Kamp and Reyle (1993) observed that proper names like Pedro are not rigid
identifiers.  In DRS, proper names are represented by predicates rather than constants. That convention 
is similar to Peirce’s practice with EGs. Following are the algebraic formulas: 

x Pedro(x)  farmer(x).∃ ∧     y z owns(y,z)  donkey(z). ∃ ∃ ∧

In English, a pronoun such as he can refer to something in a previous sentence, but the variable y in  
the second formula cannot be linked to the variable x in the first.  The structure of the EG and DRS 
notations facilitates that linkage.  On the left of Figure 15 are the EGs for each of the sentences; on    
the right are the DRSs. 

 

Figure 15.  EGs and DRSs for Pedro is a farmer. He owns a donkey. 

As in the earlier examples, the same CGIF can be used to linearize EG and DRS.  When two EGs are 
drawn in the same area, the lines of identity that represent existential quantifiers are independent of one
another, but the CGIF identifiers might cause accidental name clashes. To avoid those clashes, CGIF 
allows brackets without the ~ symbol to limit the scope of quantifiers.  Although the brackets are not 
required for this example, they can be used to emphasize the similarities between EG, DRS, and CGIF. 
The following CGIF represents the EGs and DRSs in Figure 15: 

[ [*x] (Pedro ?x) (farmer ?x) ]   [ [*y] [*z] (owns ?y ?z) (donkey ?z) ] 

To combine the two EGs, connect the line of identity for Pedro to the line for he, as in Figure 16.       
To combine the two DRSs and equate the variables x and y, transfer the contents of one DRS box to  
the other, move the variables to the top, and insert the equality x=y.  For the equivalent CGIF, erase    
the brackets around the CGIF for each EG, move all the defining nodes to the left, and insert the 
coreference node [?x ?y] after the defining nodes.  Finally, insert a pair of brackets around the result     
to emphasize the similarity of CGIF and DRS: 

[ [*x] [*y] [*z] [?x ?y] (Pedro ?x) (farmer ?x) (owns ?y ?z) (donkey ?z) ] 



 

Figure 16.  Combining the EGs and DRSs in Figure 15 

No relabeling is necessary or possible for the EG.  But the equality x=y allows either x or y to be 
deleted from the DRS or CGIF and its bound labels renamed.  After deleting [*y], relabeling every 
occurrence of ?y to ?x, and erasing the irrelevant [?x ?x], the CGIF is simplified to 

[ [*x] [*z] (Pedro ?x) (farmer ?x) (owns ?x ?z) (donkey ?z) ] 

The isomorphism between EG, DRS, and CGIF implies that Peirce’s rules can generate equivalent 
proofs with each notation.  Figure 17 begins with the EGs for the sentences Pedro is a farmer who 
owns a donkey and If a farmer owns a donkey, then he beats it.  Then the rules 2i, 1i, 2e, and 3e    
derive an EG for the conclusion Pedro is a farmer who owns and beats a donkey. 

 

Figure 17.  A proof according to Peirce’s rules 

In the graphic notation, rule 2i iterates (extends) two lines of identity from the outer graph into the 
negative area.  Then rule 1i inserts links (equalities) in the negative area to connect the lines from the 
outer area to corresponding lines in the inner area.  Following is the CGIF for the two starting EGs,   
but with a choice of labels that avoids conflicts: 

[*a] [*b] (Pedro ?a) (farmer ?a) (owns ?a ?b) (donkey ?b) 
~[ [*c] [*d] (farmer ?c) (owns ?c ?d) (donkey ?d) ~[ (beats ?c ?d) ] ] 

The step of iterating the lines into the negative area corresponds to inserting coreference nodes [?a]  
and [?b] inside the negation.  The step of inserting equalities corresponds to adding ?c to [?a] to form  
[?a ?c] and adding ?d to [?b] to form [?b ?d].  The result is 

[*a] [*b] (Pedro ?a) (farmer ?a) (owns ?a ?b) (donkey ?b) 
~[ [*c] [*d] [?a ?c] [?b ?d] (farmer ?c) (owns ?c ?d) (donkey ?d) ~[ (beats ?c ?d) ] ] 

To simplify this CGIF, erase [*c] and [*d], relabel every occurrence of ?c to ?a and ?d to ?b, and    
erase the irrelevant [?a ?a] and [?b ?b].  The result is 

[*a] [*b] (Pedro ?a) (farmer ?a) (owns ?a ?b) (donkey ?b) 
~[ (farmer ?a) (owns ?a ?b) (donkey ?b) ~[ (beats ?a ?b) ] ] 



The next step is to notice that the subgraph and corresponding CGIF for (farmer ?a) (owns ?a ?b) 
(donkey ?b) in the negative area is identical to the corresponding subgraph and CGIF in the outer area. 
Therefore, the inner copy can be deiterated (erased) by rule 2e.  The result is 

[*a] [*b] (Pedro ?a) (farmer ?a) (owns ?a ?b) (donkey ?b) 
~[ ~[ (beats ?a ?b) ] ] 

Finally, erase the double negation by rule 3e to derive the CGIF for the conclusion: 

[*a] [*b] (Pedro ?a) (farmer ?a) (owns ?a ?b) (donkey ?b) (beats ?a ?b) 

Every CGIF statement in this proof can be translated directly to DRS, and every operation performed 
on the CGIF can be performed on the DRS.  The most complex operations are the relabeling required 
for CGIF and DRS; those operations are not required for EGs.  Sowa (2011) presents more detail about 
EG syntax, semantics, proof procedures, and their mapping to CGIF. 

Kamp observed that the sentence Every farmer who owns a donkey beats it is equivalent to the DRS  
(or EG) in Figure 9. In the algebraic notation, Peirce used distinct symbols for existential and universal 
quantifiers.  For EGs, he used only one kind of line, because a line that originates in a white area 
represents an existential quantifier and a line that originates in a shaded area represents a universal. 
Since CGIF is not as iconic as EGs, the symbol @every can be used to represent a universal quantifier. 
The CGIF concept [Farmer @every] represents the phrase every farmer.  But the phrase every farmer 
who owns a donkey requires a CGIF type expression, which is similar to a lambda expression: 

[@*u [Farmer ?u] [Donkey *v] (Owns ?u ?v): @every*x] (Beats ?x ?v) 

This CGIF can be read Every farmer x who owns a donkey v beats v.  Note that the coreference label ?u 
cannot be used outside the type expression, but the coreference labels ?x and ?v can be.  The Common 
Logic standard defines CGIF type expressions by their expansion to core CGIF.  When this CGIF is 
expanded, the result is identical to the CGIF for Figure 9 (except for the names of labels). That 
expansion shows why the scope of the defining labels *x and *v includes (beats ?x ?v). 

For disjunctions, Figure 18 shows the EG and DRS for an example by Kamp and Reyle (1993:210):  
Either Jones owns a book on semantics, Smith owns a book on logic, or Cooper owns a book on 
unicorns.  The EG at the top of Figure 18 shows that the existential quantifiers for Jones, Smith, and 
Cooper are in the outer area, but the quantifiers for the three books are inside the alternatives. 

 

Figure 18.  EG and DRS for a disjunction with three alternatives 

Both Peirce and Kamp allowed spaces inside relation names, but CGIF requires names with spaces     
or other special characters to be enclosed in quotes: 



[*x] [*y] [*z] (Jones ?x) (Smith ?y) (Cooper ?z) 
[Either [Or [*u] (owns ?x ?u) ("book on semantics" ?u)] 
            [Or [*v] (owns ?y ?v) ("book on logic" ?v)] 
            [Or [*w] (owns ?z ?w) ("book on unicorns" ?w)] ] 

The labels Either and Or are synonyms for the ~ symbol.  Since the linear CGIF notation is not as 
iconic as the shading of the EG diagrams, the labels can improve its readability.  Note that CGIF has    
a more direct mapping to DRS than to EG. 

All the axioms and rules of inference for classical FOL, including the rules of the Principia 
Mathematica by Whitehead and Russell (1910), natural deduction by Gerhard Gentzen (1935), and 
resolution by Alan Robinson (1965) can be derived from Peirce’s rules (Sowa 2011).  In the Principia, 
the following statement, which Leibniz called the Praeclarum Theorema (Splendid Theorem), was 
proved in 43 steps, starting with five non-obvious axioms: 

((p⊃r)  (∧ q⊃s))  ((⊃ p∧q)  (⊃ r∧s)) 

With Peirce’s rules, this theorem can be proved in just seven steps, starting with a blank sheet of paper. 
Figure 19 shows the EG at each step and the rule used to derive it:  Start with a blank sheet.  By rule 3i,
insert a double negation around an empty space.  By 1i, insert the EG for the hypothesis ((p r)  ⊃ ∧
(q s)) in the shaded area.  By 2i, iterate (p r).  By 1i, insert q. By 2i, iterate (q s).  By 2e, deiterate q.⊃ ⊃ ⊃
By 3e, erase the double negation.  Each step inserts or erases one graph or subgraph, and the final graph
is the statement of the theorem. 

 

Figure 19.  Proof in 7 steps instead of 43 in the Principia 

In CGIF, a proposition p is represented as a relation with zero arguments:  (p).  The result of applying 
rule 3i to the blank produces the CGIF ~[ ~[ ] ].  Each of the next six steps shown in Figure 19 can be 
applied to the equivalent CGIF statement to produce the conclusion 

~[ ~[(p) ~[(r)]] ~[(q) ~[(s)]] ~[ ~[(p) (q) ~[(r) (s)]]]] 

Peirce’s proof procedure is a generalization and simplification of natural deduction.  Unlike Gentzen’s 
version, which uses a method of making and discharging assumptions, Peirce’s proofs proceed in a 
straight line from a blank sheet to the conclusion:  every step inserts or erases one subgraph in the 
immediately preceding graph.  As Figure 19 illustrates, the first two steps of any proof that starts with a
blank must draw a double negation around the blank and insert some graph in the negative area.  Those 
two steps are the equivalent of making and discharging an assumption, but Peirce’s rules do not require 
bookkeeping to keep track of the assumptions. 



Although Peirce stated his rules in terms of EG syntax, the restatement in terms of generalization and 
specialization depends only on semantic criteria:  the models for which a statement is true, coreference 
links between symbols, and whether an area is positive or negative.  As the examples show, Peirce’s 
rules can be applied equally well to EG, DRS, or CGIF syntax. Kamp and Reyle (1996) developed a 
version of natural deduction for the DRS notation, but their rules can be proved as derived rules of 
inference in terms of Peirce’s rules.  The derivation is similar to the demonstration by Sowa (2011)   
that Gentzen’s version of natural deduction is a special case of Peirce’s. 

With adjustments to accommodate differences in syntax, Peirce’s rules can be applied to many other 
notations for FOL. Since the algebraic notation requires explicit  symbols, those symbols would have ∧
to be inserted (for rules 1i and 2i) or erased (for rules 1e and 2e).   To clarify the grouping, parentheses 
may be inserted or erased as needed.  As an exercise, repeat the proof in Figure 19 with algebraic 
formulas:  Use a pencil to shade the negative areas of each formula. Then perform the same seven steps
by inserting or erasing algebraic expressions.  Since the  operator for implication corresponds to a ⊃
double negation, the first step of inserting a double negation by rule 3i corresponds to writing  on a ⊃
sheet of paper and using the pencil to shade some area on the left of .  The next step of inserting the ⊃
hypothesis ((p r)  (q s)) in the shaded area would reverse the shading of that formula.  For each    ⊃ ∧ ⊃
of  the next six steps, show that the formula that corresponds to each EG in Figure 19 is derived by 
applying the rule cited on the arrow. 

Peirce’s rules can be adapted to any notation for Common Logic.  CL allows quantifiers to range over 
functions and relations, but it preserves a first-order style of model theory and proof theory (Hayes & 
Menzel 2001).  To support higher-order syntax, but without the computational complexity of higher-
order semantics, CL model theory uses a single domain D that includes individuals, functions, and 
relations.  The option of limiting the domain of quantifiers to a single set was suggested by Quine 
(1953) and used in theorem provers that allow quantifiers to range over relations and functions (Chen  
et al., 1993).  The CL semantics is defined in an abstract syntax that is independent of any concrete 
notation (ISO/IEC 24707).  When Peirce’s rules are stated in terms of the CL abstract syntax, they can 
be adapted to CL concrete notations by the same transformations used to map the syntax.  Features 
such as shading can simplify the statement or visualization of the rules. 

5. Extensions to Common Logic
Natural languages can say anything that can be expressed in any formal logic and much more that 
cannot.  They can even express metalevel statements about themselves, about their relationship to  
other languages, and about the truth, uncertainty, modality, or intentionality of any statement.  With   
his experience in lexicography and his pioneering work in logic, Peirce analyzed and represented the 
implicit logic and ontology in many aspects of language. He used the terms Alpha graphs for EGs that 
are limited to propositional logic, as in Figure 19; Beta graphs for EGs that use lines of identity to 
express FOL; and Gamma graphs for EGs that represent metalanguage, modal logic, and higher-order 
logic.  Figure 20 shows one of his early Gamma graphs (Peirce 1898). 

 

Figure 20.  An EG that makes a metalevel statement about the nested EG 

The oval in Figure 20 encloses an EG that states a proposition, which Peirce represented by a character 
string that contains blanks.  In CGIF, that proposition is represented by a quoted string enclosed in 



parentheses:  ("You are a good girl").  In this EG, the oval does not represent negation because it is 
attached to a line of identity.  The relation at the other end of the line makes a statement about the 
proposition stated by the nested EG.  Figure 20 goes beyond the standard semantics for Common 
Logic, but it could be represented by an extension to CGIF: 

[Proposition *p ("You are a good girl")] ("is much to be wished" ?p) 

This CGIF states that there exists a proposition p expressed by the CGIF that follows the label *p.    
The relation makes a statement about the proposition p, not about something in the world.  The 
medieval Scholastics used the term first intention (prima intentio) for language about the world         
and second intention for language about language. 

Peirce adopted the Scholastic terminology and called his version of FOL first-intentional logic. He 
coined the term second-intentional logic for quantifiers that range over relations. Ernst Schröder 
translated those terms to German as erste Ordnung and zweite Ordnung, and Bertrand Russell 
translated them back to English as first order and second order.  But Figure 20 uses a feature that is   
not available in Peirce’s logic of 1885 or in many newer versions of higher-order logic:  the ability      
to make statements about propositions stated in the logic itself. 

As an example, first-order logic can represent the sentence Bob said “The sky is blue” by treating      
the quoted part as an unanalyzed character string.  But first-order logic, by itself, cannot represent      
the sentence Bob said that the sky is blue.  The crucial feature of this sentence is the word that, which 
enables the sentence to make a statement about the proposition expressed by the string.  That ability is 
the defining characteristic of metalanguage.  Common Logic can refer to propositions with quantified 
variables, but it cannot relate a sentence to the proposition it expresses.  To support metalanguage, the 
Interoperable Knowledge Language (IKL) extends Common Logic with a special operator called that 
(Hayes & Menzel 2006).  With the IKL extension, the sentence Bob said that the sky is blue can be 
represented in CLIF notation as 

(exists (p) (and (= p (that (blue sky))) (said Bob p))) 

To express the same semantics, CGIF uses a concept node with the type label Proposition: 

[Proposition *p (blue sky)] (said Bob ?p) 

These statements can be read There exists a proposition p that the sky is blue, and Bob said p. The 
simpler sentence Bob said that the sky is blue does not require the variable p in CLIF or CGIF: 

(said Bob (that (blue sky))) 

(said Bob [Proposition (blue sky)]) 

A common use of metalanguage is to talk about the beliefs, desires, and intentions of the speaker and 
other people.  As an example, the sentence Tom believes that Mary wants to marry a sailor, contains 
three clauses, whose nesting can be marked by brackets: 

Tom believes that [Mary wants [to marry a sailor]]. 

The outer clause says that Tom has a belief, which is expressed by the nested clause. That clause says 
Mary wants a situation described by the nested infinitive. Since each clause delimits the scope of 
quantifiers, questions can arise about the sailor’s existence outside of Tom’s belief or Mary’s desire. 
Following are three interpretations: 

1. Tom believes that [Mary wants [to marry someone who is sailor]]. 

2. Tom believes that [there is a sailor whom Mary wants [ to marry]]. 

3. There is a sailor whom Tom believes that [Mary wants [to marry]]. 



The conceptual graphs in Figure 21 represent the first and third interpretations. 

 

Figure 21.  Two interpretations of Tom believes that Mary wants to marry a sailor. 

In the CG on the left of Figure 21, the existential quantifier for the concept [Sailor] is nested inside the 
situation that Mary wants.  Whether such a sailor actually exists and whether Tom or Mary knows his 
identity are not stated.  The CG on the right explicitly states that such a sailor exists and that Tom 
believes Mary wants to marry him.  The middle option would move the concept [Sailor] inside the 
concept of type Proposition.  It would imply that Tom believes some such sailor exists, but not imply 
that Tom’s belief is true. 

The CGs in Figure 21 represent distinctions that are not marked in the EG of Figure 20.  The theme 
(Thme) of belief is a proposition, but the theme of wanting is a physical situation.  With situation 
semantics, Barwise and Perry (1983) addressed these issues, but the major challenge, as Devlin (1991) 
said, was to define situations:  they “include, but are not equal to any of simply connected regions of 
space-time, highly disconnected space-time regions, contexts of utterance (whatever that turns out to 
mean in precise terms), collections of background conditions for a constraint, and so on.”  Devlin 
finally admitted that they cannot be defined:  “Situations are just that: situations.  They are abstract 
objects introduced so that we can handle issues of context, background, and so on.” 

According to Devlin, the choice of situation is subjective:  “An important feature of situations that our 
theory reflects is that the structure of a situation is significant to the agent.” That admission undermines
the hope of using situations as an objective foundation for defining beliefs, desires, and intentions.  By 
treating situations as abstract mathematical objects, Devlin separated the logical and philosophical 
issues.  That move transfers the hard problems from logic to ontology.  In his paper, Devlin acknow-
ledged Pat Hayes for the “motivation” to simplify the logic.  Hayes, by the way, was the coauthor with 
Chris Menzel of the model theory for Common Logic and for the IKL extension to CL. 

For conceptual graphs, the default ontology has a Description relation (Dscr), which relates a situation 
to a proposition.  The following CGIF says that there exists a situation s, there exists a proposition p 
that the sky is blue, and a description of s is p: 

[Situation *s] [Proposition *p (blue sky)] (Dscr ?s ?p) 

This graph can be abbreviated by a concept node of type Situation that contains the nested CGIF: 

[Situation (blue sky)] 

This method of abbreviation is a type coercion that is common in programming languages:  any 
situation node with a nested CG can be expanded to a CG that describes the situation by a proposition 
node with the same nested CG. Similar type coercions are common in natural languages. 

With the IKL metalanguage, the description relation can support a semantics with propositions as 
primitive instead of situations. But that option requires a definition of proposition.  According to  



Peirce (CP 5.427), “The meaning of a proposition is itself a proposition.  Indeed, it is no other than    
the very proposition of which it is the meaning:  it is a translation of it.”  Peirce’s criterion implies that 
a proposition is an equivalence class of sentences that can be translated from one to another while 
preserving meaning. Formally, a meaning-preserving translation (MPT) over the sentences of a first-
order language L is any function f from L to L that satisfies three constraints: 

1. Truth preserving.  The sentences s and f(s) must have the same truth conditions. For any model 
M of L, the truth values of the sentences s and f(s) must be identical. Preserving truth is 
necessary for meaning preservation, but it groups too many sentences in the same equivalence 
class. For example, 2+2=4 and Fermat’s last theorem are true in every model of Peano’s axioms,
but they are not synonymous. The test to determine whether two sentences mean the same 
should be computable by a simple and efficient algorithm. 

2. Vocabulary preserving.  A sentence s and its translation f(s) may contain different logical 
operators, their syntax may be rearranged, and the labels of quantified variables may be 
different. But f must not add or delete arbitrary terms.  For example, the sentence Every cat is    
a cat should not be considered synonymous with Every dog is a dog or Every unicorn is a 
unicorn.  This constraint may be relaxed to allow f to replace every occurrence of a term with   
its definition.  It might replace cat with domestic feline, but not with dog or unicorn. 

3. Structure preserving.  The computational complexity of the sentences s and f(s) must be the 
same.  For example, the sentences Every farmer who owns a donkey beats it and If a farmer x 
owns a donkey y, then x beats y have the same computational properties.  But the sentences p 
and ~~p, which have the same truth values, are treated differently by many inference engines.  
Since negations are critical to computational complexity, s and f(s) must have the same depth   
of nested negations when translated to EGs. 

A convenient way to specify the equivalence class is to define an MPT f that translates sentences to a 
canonical form.  Two sentences u and v belong to the same equivalence class if and only if they have 
the same canonical form:  f(u) = f(v).  The following four steps define a suitable MPT: 

1. For any named entity (individual, function, or relation) that is specified by a context-free, 
nonrecursive definition, replace the name by its definition.  Do not replace any name that is 
specified by a context-sensitive or recursive definition. 

2. Replace the quantifiers and Boolean operators by their definitions in terms of conjunction, 
negation, and the existential.  Delete unnecessary blanks, parentheses, or other punctuation. 

3. Relabel all variables or labels bound by quantifiers to a fixed sequence, such as x1, x2, .... 
Within each area, sort all conjuncts by their representation as character strings.

4. After step 3, note whether any conjunct is identical to its predecessor; if so, delete it.  This    
step is equivalent to Peirce’s rule of deiteration within a single area, but not nested areas.       
For p of any size, it would replace p p with p, but it would leave ~(p  ~(p)) unchanged. ∧ ∧

This translation may be called Peirce normal form (PNF), since it uses the same operators as EGs. 
Sentences with the same PNF are logically equivalent:  steps 1 and 2 replace some terms and operators 
with their definitions; step 3 sorts conjuncts; and step 4 deletes duplicates. The translation to PNF is 
efficient:  the sort in step 3 may take (N log N) time; the other steps take linear time. 

For modal logics, propositions can specify or replace possible worlds.  Michael Dunn (1973) showed 
that every possible world w in Kripke’s semantics has a one-to-one mapping to a pair of sets (L,F):    
the laws L of w are the necessarily true propositions, the facts F of w are the true propositions, and     
the possibilities P of w are the propositions consistent with L.  With Dunn’s semantics, Kripke’s 



accessibility relation is no longer an unexplained primitive:  a world u is accessible from a world w iff 
every law of w is a fact of u.  A logic that supports metalanguage, such as IKL, can declare appropriate 
conditions on the laws and facts to support versions of modality and theories of beliefs, desires, and 
intentions (Sowa 2003, 2006b).  It can also express the “three modes of being” by Peirce (CP 1.21-23): 
“the being of positive qualitative possibility, the being of actual fact, and the being of law that will 
govern facts in the future.” 

As these examples show, Common Logic with extensions for metalanguage provides a first-order 
framework that can eliminate the need for a multiplicity of different logics, each with its own model 
theory and proof theory.  To avoid paradoxes of metalanguage, Tarski (1933) proposed a stratified 
series of first-order metalevels.  In effect, he declared that certain kinds of sentences (those that violate 
the stratification) do not express propositions in his logic.  The IKL model theory does not require 
stratified metalevels, but it also avoids paradoxes by eliminating troublesome propositions.  The 
following sentence sounds paradoxical, but the IKL version is false because no such proposition exists: 

There exists a proposition p, p is true, and p says that p is false. 

In CLIF and CGIF notation, 

(exists ((p Proposition)) (and (p) (= p (that (not (p)))))) 

[Proposition *p] (?p) [Proposition ?p ~[(?p)]] 

In any notation for IKL, the equivalent of ( p) would be false. ∃

6. Mapping Language to Logic
Frege and Russell considered their symbolic notations superior to NLs, but Richard Montague (1970) 
ignored the differences:  “I reject the contention that an important theoretical difference exists between 
formal and natural languages.”  Many computational linguists agreed.  Terry Winograd (1972) designed
SHRDLU as a compiler from English to logic and described the process as Natural Language 
Understanding.  Figure 22 shows the compilation as a linear sequence:  the morphology stage strips off
the endings of words and retrieves their definitions from a lexicon; the syntactic stage parses sentences;
and the semantic stage generates a version of logic called Microplanner.  Finally, an inference engine 
processes the logic to answer a question, perform an action, or update the knowledge base. 

 

Figure 22.  Compiling language to logic 

Although SHRDLU was called a “natural language” system, its subset of English should be called        
a controlled NL.  SHRDLU had a formal grammar, a version of logic for specifying ontology, and a 
theorem prover for processing the logic.  For his next project, Winograd (1983) wrote a well-received 
textbook with the title Language as a Cognitive System. Volume I: Syntax.  While writing the second 
volume, he realized the limitations of formal semantics (Winograd & Flores 1986).  Since then, he has 
been a strong critic of attempts to map language to logic. 

Even when every sentence is unambiguous, background knowledge is needed to determine the pattern 
of relationships.  Figure 23 shows a conceptual graph derived from the following story: 



At 10:17 pm, Yojo the cat and a mouse were in the basement of a house. Yojo chased the 
mouse. He caught the mouse. He ate the head of the mouse. 

 

Figure 23.  Marking indexicals in discourse 

Figure 23 uses DRS conventions to show the time sequence.  The large box encloses a situation with 
three nested situations, each described by one of the sentences.  The # symbol, which is not included   
in the CGIF standard, marks context-dependent indexicals.  A considerable amount of information is 
required to derive Figure 23; even more is needed to replace the # markers with coreference labels: 

• In a static description, the sentences have no implicit temporal order, and the default connective 
is the conjunction and.  But in a narrative, the default connective is and then, represented by the
relation (Next).  For this example, the stative verb were in the first sentence suggests a 
description.  The action verbs suggest a narrative sequence. 

• The relations for location (Loc) and point in time (PTim) could be attached to a verb, as in 
Tesnière’s graphs (Figure 6), or they could be attached to a situation box, as in Figure 23.   
Since the story did not say that the cat or the mouse left the basement, the default assumption   
is that the actions mentioned in the last three sentences occurred there. 

• Machine-readable dictionaries and related lexical resources are needed to determine the 
thematic roles associated with verbs and the relations such as (Part) that connect [House]          
to [Basement] and [Mouse] to [Head]. 

• Other kinds of background knowledge are necessary to determine which markers or symbols 
should be used for names like Yojo, time references like 10:17 pm, pronouns like he, and the 
definite articles in the phrases the basement, the mouse, the head, and the cat Yojo. 



 

Figure 24.  Resolving the indexicals 

Figure 24 shows the results of resolving indexicals by replacing # symbols with bound labels.  Since 
the nested boxes in the CG and DRS are isomorphic, similar methods can be used.  For this example, 
the two main discourse referents are marked by defining labels:  [Cat Yojo *x] and [Mouse *y].  
References to them are marked by bound labels ?x and ?y.  But the indexical markers in [Basement #] 
and [Head #] in Figure 23 were not replaced with bound labels in Figure 24.  Those # markers were 
erased because background knowledge shows that houses often have basements and mice always have 
heads.  The concepts [Basement] and [Head] can therefore be assumed as default discourse referents. 

In DRS, proper names are represented by monadic relations, but the name Yojo seems to be a constant.  
To show that names are not rigid identifiers, the default ontology for CGs defines [Cat Yojo] as an 
abbreviation for the following CGIF: 

[Cat *x] [String 'Yojo'] (HasName ?x 'Yojo') 

This CGIF can be read There exists a cat x, 'Yojo' is a character string, and x has 'Yojo' as its name.    
In the book Moby Dick, Queequeg had an ebony idol named Yojo.  If the cat Yojo and the idol Yojo   
are mentioned in the same context, the full CGIF can be used to distinguish them: 

[Cat *x] [Idol *y] [String 'Yojo'] (HasName ?x 'Yojo') (HasName ?y 'Yojo') 

Names for points in time are treated like names for cats and people.  Names with embedded blanks or 
special characters are enclosed in double quotes:  [Time "10:17 pm"].  For computer applications, the 
recommended standards for dates, times, and measures can be used as names in Common Logic. 

As this story shows, background knowledge is needed to determine the patterns of relations among    
the words and phrases.  Formally defined knowledge can be stored in the lexicon and used to compile 
language to logic, as in Figure 22.  But Alan Perlis (1982) warned that it’s impossible to translate an 
informal language to a formal language by any formal algorithm.  What makes NLs informal is the 
unpredictable amount and variety of background knowledge.  Missing or implicit knowledge is the 



source of vagueness in language, but the many questions about finding it and integrating it with syntax 
and semantics are still open research problems. 

Long before Winograd abandoned his book on semantics, Wittgenstein (1953) recognized the “grave 
errors” (schwere Irrtümer) in the framework he had adopted from his mentors, Frege and Russell.      
He realized that a vague statement can sometimes be more useful than a precise one: 

Frege compares a concept to a region, and says that a region without clear boundaries can’t 
be called a region at all. This presumably means that we can’t do anything with it. – But is 
it senseless to say:  “Stand roughly here”?  (§71) 

Peirce used logic to analyze language, not replace it.  As he said, the vocabulary of a language 
embodies “all the ideas that seek expression,” and defining them precisely “is the most stupendous      
of logical tasks.” He also recognized the importance of vagueness: 

It is easy to speak with precision upon a general theme.  Only, one must commonly 
surrender all ambition to be certain.  It is equally easy to be certain.  One has only to be 
sufficiently vague.  It is not so difficult to be pretty precise and fairly certain at once about  
a very narrow subject. (CP 4.237) 

Vagueness is essential to the flexibility of language.  A finite vocabulary cannot have unique words     
or even unique phrases (patterns of words) for a continuous infinity of possible variations.  Most   
words must therefore have an open-ended variety of senses or microsenses, each with a dynamically 
varying collection of patterns that map to patterns in the world.  Peirce emphasized the continuous 
transformations that generalize patterns from one “narrow subject” and adapt them to others.  For the 
patterns of those narrow subjects, Wittgenstein coined the term language game (Sprachspiel).  Words 
and patterns may be defined precisely for a narrow subject or game, but the transformations can mix   
or blend patterns from different sources (Sowa 2010). 

When patterns are taken out of context and mixed with patterns from sources with different constraints,
vagueness is inevitable.  Almost any paragraph taken at random from a daily newspaper has patterns 
that cannot be analyzed by a fixed algorithm.  Readers who are familiar with the subject would 
understand it, but anyone without the background would be confused.  A formal logic can represent   
the patterns of any language game, but a language processor would require heuristic and statistical 
methods that can find, learn, invent, and adapt new patterns dynamically (Majumdar & Sowa 2009). 

7. A Moving Picture of Thought
Peirce defined all his versions of logic and their rules of inference in purely formal terms, but he also 
discussed their linguistic and psychological implications.  Among his many intriguing insights are the 
term mental diagram and the claim that existential graphs “put before us moving pictures of thought... 
in its essence free from physiological and other accidents” (CP 4.8).  But he added, “Please note that I 
have not called it a perfect picture.  I am aware that it is not so: indeed, that is quite obvious.  But I hold
that it is considerably more nearly perfect than it seems to be at first glance, and quite sufficiently so to 
be called a portraiture of Thought” (CP 4.11). 

Pietarinen (2006) showed that Peirce’s mental diagrams and moving pictures are intimately connected 
to every aspect of his logic and semiotics.  The psychologist Johnson-Laird (2002), who had written 
extensively about mental models, supported Peirce’s claims: 

Peirce’s existential graphs... establish the feasibility of a diagrammatic system of reasoning 
equivalent to the first-order predicate calculus.  They anticipate the theory of mental models
in many respects, including their iconic and symbolic components, their eschewal of 



variables, and their fundamental operations of insertion and deletion. 

Much is known about the psychology of reasoning... But we still lack a comprehensive 
account of how individuals represent multiply-quantified assertions, and so the graphs    
may provide a guide to the future development of psychological theory. 

Today, neuroscience has confirmed the psychological evidence for mental models. The neuroscientist 
Damasio (2010) avoided the word mental, but his maps and images refer to the same phenomena: 

The distinctive feature of brains such as the one we own is their uncanny ability to create 
maps... But when brains make maps, they are also creating images, the main currency of 
our minds. Ultimately consciousness allows us to experience maps as images, to manipulate
those images, and to apply reasoning to them. 

The images form mental models of the real world or the imaginary worlds in our hopes, fears, plans, 
and desires. Neural processes map them to and from language more efficiently than any computer. Like
Tarski’s models, they determine the truth of a sentence, but they are flexible, dynamic, and situated in 
the daily drama of life.  Peirce’s diagrams can represent Tarski’s models, but they can also represent the
mental models. Figure 25 shows a Peircean diagram as a Janus-like model with a cognitive side that 
faces the world and a formal side that faces a theory about the world. 

 

Figure 25.  A model that relates a theory to the world 

On the left is the world, which contains more detail and complexity than any humanly conceivable 
theory can represent.  In the middle is a diagram of a Tarski model that represents a domain D of 
individuals and a set R of relations over D.  If the world had a unique decomposition into discrete 
objects, the world itself would be a universal model, of which all correct models would be subsets. But 
the choice of objects and relations depends on the intentions of some agent and the limitations of the 
agent’s measuring instruments.  As Peirce observed, all theories are fallible, but some can be “a pretty 
good” approximation to a “very narrow” aspect of the world. Engineers express that point in a pithy 
slogan:  All models are wrong, but some are useful. 

In his Summa Logicae, William of Ockham (1323) presented a model-theoretic semantics for a version 
of controlled Latin.  For the logical operators, he stated truth conditions that are equivalent to Tarski’s. 
But he limited the syntax to the sentence patterns of the traditional categorical and hypothetical 
syllogisms.  To relate the truth value of a complex sentence to the truth values of its simple clauses, 
Ockham’s rules were not as general as Tarski’s, by they were adequate for him to demonstrate the 
soundness of the rules of inference for syllogisms. 



Peirce had studied Ockham in detail, and he used similar semantic arguments to prove the soundness  
of his own rules of inference.  For EGs, he developed a version of model theory he called endoporeutic 
(outside-in evaluation).  To evaluate the truth of a graph g in terms of a model M, Peirce invented a 
procedure that is as precise and general as Tarski’s, but psychologically more realistic. He defined 
endoporeutic as a dialog between Graphist, who asserts a graph, and Grapheus, who doubts its truth. 
Most logicians ignored Peirce’s unconventional notation and strange terminology, but Hilpinen (1982) 
recognized that endoporeutic is a version of game theoretical semantics (GTS):  g is true of M if 
Graphist has a winning strategy; g is false if Grapheus has a winning strategy. 

Although Tarski’s definition is more familiar, Hintikka (1973) showed that GTS is more flexible.       
By using context-dependent background knowledge, GTS can be adapted to informal languages.  To 
determine the truth value of a sentence s in terms of a model M, Tarski defined an evaluation function 
Φ(s,M) that considers all possible mappings of individuals in M to variables in s.  That definition 
implies a huge amount of unnecessary computation.  But GTS can prune irrelevant branches of the 
game tree with the α-β algorithm used in chess programs (Knuth & Moore 1975).  For an introduction 
to model theory, Barwise and Etchemendy (1993) chose the title Tarski’s World, but GTS was the 
method they taught.  It’s easier to explain, and it allows students to use perception and background 
knowledge in the same way as a human chess player.

As a theory of mental models, Peirce’s EGs and endoporeutic are quite plausible:  both the logic and 
the model are represented as graphs; the neural mechanisms for pattern recognition can support the 
rules of inference and the model theory; and the GTS evaluation corresponds to an imaginary dialog 
between a proposer (Graphist) and a skeptic (Grapheus).  If a graph g has no negations, endoporeutic 
corresponds to a graph mapping (homomorphism) of g into the model M:  g is true if it can be mapped 
to M; otherwise, g is false.  If g has negations, Graphist and Grapheus would take turns peeling off 
negations and mapping subgraphs of g to M (Sowa 2011). 

The simplicity and generality of the EG structure, rules of inference, and dialog for evaluating truth    
or falsity makes EGs a good candidate for a mental logic.  As Damasio said, images are “the main 
currency of our minds.”  Those images or their neural representations could be mapped to the lines, 
ovals, and character strings of EGs.  As an example, Figure 26 applies Peirce’s rules to images of 
English sentences overlaid with shaded ovals. 

 

Figure 26.  Specializing and generalizing English phrases 

In Figure 26, the word every, which is on the boundary of the ovals, creates the same pattern of nested 
negations as if-then.  By the rule of insertion in a negative area (1i), the word cat can be specialized to 
cat in the house.  By the rule of erasure in a positive area (1e), the word carnivore can be generalized  
to animal.  In this example, the images are printed words, but the mental models could link them to 
images of animals and houses.  Shading could be represented by inhibitory connections in neurons. 



 

Figure 27.  A proof in controlled English by Peirce’s rules 

Figure 27 shows a short proof.  By the rule of insertion in a negative area (1i), the clause a cat is on a 
mat is specialized to Yojo is on a mat.  By iteration (2i), a copy of the name Yojo replaces the coreferent
pronoun it. The replacement of a pronoun with a name corresponds to replacing an indexical marker 
with a bound label in Figure 24.  By deiteration (2e), the clause Yojo is on a mat is erased because it    
is identical to a sentence in the outer area.  Finally, the shaded area and the operators if and then are 
erased by the rule of double negation (3e).  The rules illustrated in Figures 26 and 27 are sound for a 
version of controlled English.  But as the story about Yojo and the mouse showed, unrestricted English 
requires more background knowledge and more ways of using it. 

Although EGs can represent a moving picture of the mind in thought, they are not a perfect picture, as 
Peirce admitted.  Many kinds of diagrams are better tailored to specialized subjects.  For music, Figure 
28 shows one measure in the usual notation.  Below it is a note-by-note translation to the boxes and 
circles of a conceptual graph.  An experienced musician can read music notation at sight and play it at 
full speed.  By contrast, the CG reflects the laborious analysis of a beginner who examines each note  
to determine its tone, duration, and relationship to other tones on the same beat or the next beat. 



 

Figure 28.  Two diagrams for representing the logic and ontology of music 

The diagrams in Figure 28 illustrate issues about language, logic, ontology, and diagrams of any kind.  
Ancient flutes and stringed instruments show that people understood the logic and ontology of music 
thousands of years before they had any notation for recording them.  The masters taught their students 
how to play those instruments by example and by explanations in whatever language they spoke.  For 
beginners, those explanations probably used as many words as the boxes and circles in the CG.  The 
logic and ontology of that language would have a direct mapping to and from CGs. For more advanced 
students, the master would continue to make comments in language and other signs. But the signs could
be brief because the students would use their newly acquired knowledge to fill in the implicit detail. 
Similar principles apply to diagrams of any kind: 

• Logic.  The two most common logical operators are existence and conjunction.  Any mark on a 
page indicates the existence of something represented by that mark.  Conjunction is implicit:  
any marks or patterns of marks in the same area are related by and.  Other logical operators are 
much less common. 

• Ordered relations.  A direction in space can represent an ordered relation.  In music, time flows 
from left to right, and two notes in sequence are related by Next with an implicit and.  Relative 
pitch is represented vertically, and absolute pitch is marked by lines on the staff.  For a partial 
ordering, such as a type hierarchy, vertical or horizontal position can show the direction, and 
alternatives can be shown by branching lines. 

• Unordered relations.  Most relations don’t have an ordering, linear or partial.  They can be 
marked by a word or other symbol and connected to whatever they relate by lines, adjacency,  
or some enclosure.  Ordered relations can also be marked by symbols.  In music, for example, 



tempo is a continuous ordering represented by discrete words such as allegro or andante. 

• Coreference.  Diagrams can eliminate variables by linking all references to a single node for 
each individual. If an individual is shown in more than one area, coreference can be indicated 
by lines, as in EGs, or by a choice of lines or labels, as in CGs. 

• Uniqueness.  In perception, two objects seen in different locations in the same view are 
considered distinct, but similar objects seen at different times could be the same or different.    
In logic, two existential quantifiers with different variables, such as ( x) and ( y), do not   ∃ ∃
imply x≠y.  Diagrams may have various defaults and conventions for overriding them. 

• Precision.  Some diagrams are formally defined, but others are as ambiguous as any NL text.  
As Figure 28 shows, music notation leaves much of the ontology implicit, but it is sufficiently 
precise to be compiled to logic.  Some diagrams that look “simple” omit so much background 
knowledge that nobody but the author could interpret them. 

• Images.  Photographs and drawings are the most exact icons.  Some words, such as ring, are 
auditory icons of the sounds they represent.  But as Peirce said, symbols evolve from icons.  
The symbol  no longer resembles a typical telephone, whose ring tone rarely sounds like    ☎
the word ring and is usually far more complex than a single tone. 

Diagrams lie on a continuum from a photograph or phonograph, to a drawing or transcription, and then 
to the stylized versions in Figure 28.  They all preserve some aspects of the original structure, but they 
differ in the amount of detail, the selection of detail, the accuracy of the mapping, and the suitability for
various purposes.  For a musician with long years of practice, the traditional notation has become “a 
moving picture of the action of the mind in thought.”  But it can be mapped to and from a CG.  Neither 
notation is identical to anything in the brain, but the structure that is common to both could serve as a 
hypothesis about the neural patterns. 
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