What is the Source of Fuzziness?

John F. Sowa

Fuzziness is characteristic of the way people use natural languages. Over the centuries, philosophers,
linguists, and logicians independently discovered and commented on many aspects of fuzziness, but
without a common foundation for organizing and relating their discoveries. In their historical survey,
Dubois, Ostasiewicz, and Prade (1999) cited numerous examples:

Looking back in time, what is really amazing is the diversity of fields, where intuitions
about fuzziness were expressed and more or less formalized, and the number of scientists
who participated to the emergence of the fuzzy set concept. Also it is surprising to see how
long it took before such a simple, although powerful, idea of graded membership, could be
cast into a proper, widely accepted mathematical model, due to the far-ranged vision, the
tenacity, and the numerous seminal papers of Lotfi Zadeh.

Dubois et al. presented a thorough survey of the mathematical methods for quantifying and computing
with and about fuzziness. Zadeh (1996) identified fuzzy logic and “computing with words” (CWW).
Mendel, Zadeh, and others (2010) discussed the challenge of relating the CWW methodology to the
semantic issues in linguistics and the technology for natural language processing (NLP). This article
surveys the issues and suggests some ways for relating them.

This article is a slightly edited preprint from On Fuzziness: Studies in Fuzziness and Soft Computing, vol. 2, edited by
Rudolf Seising, Enric Trillas, Claudio Moraga, & Settimo Termini, Berlin: Springer, 2013, pp 645-652.

1. Fuzziness in Language

According to Heraclitus, panta rhei — all things are in flux. But what gives that flux its form is the
logos — the words or signs that enable us to perceive patterns in the flux, remember them, talk about
them, and take action upon them even while we ourselves are part of the flux we are acting in and on.
Modern physics is essentially a theory of flux in which the ultimate building blocks of matter maintain
some semblance of stability only because of conservation laws of energy, momentum, spin, charge, and
more exotic notions like charm and strangeness. Meanwhile, the concepts of everyday life are derived
from experience with objects and processes that are measured and classified by comparisons with the
human body, its parts, and its typical movements. Yet despite the vast differences in sizes, speeds, and
time scale, the languages and counting systems of our stone-age ancestors have been successfully
adapted to describe, analyze, and predict the behavior of everything from subatomic particles to
clusters of galaxies that span the universe.

With such a vast range of topics, no language with a finite vocabulary can have a one-to-one mapping
of words to every aspect of every topic. Vagueness is not only inevitable, it is necessary for language
to be robust, flexible, and extensible. Dubois et al. cited the logician, philosopher, and scientist
Charles Sanders Peirce as “one of the first scholars in the modern age” to point out the importance of
vagueness. Peirce wrote a succinct summary of the issues:

“It is easy to speak with precision upon a general theme. Only, one must commonly
surrender all ambition to be certain. It is equally easy to be certain. One has only to be
sufficiently vague. It is not so difficult to be pretty precise and fairly certain at once about
a very narrow subject.” (CP 4.237)



The narrow subjects for which precision is possible are ones that the speakers or authors selected for

a specific purpose. In writing dictionary definitions, lexicographers start by defining the most typical
examples, such as a chair with a back and four legs. Then they list exceptions that deviate from the
type for various reasons. To illustrate that practice, Lehmann and Cohn (1994) drew egg-yolk diagrams
such as Figure 1. Typical chairs are shown in the yolk, unusual chairs are in the egg white, and things
that might be used as chairs are just outside the egg.

Figure 1. An egg-yolk diagram for the word chair

The boundaries of the egg and egg-yolk of Figure 1 resemble the way Bandler and Kohout (1988)
partition a fuzzy set with level cuts. The level 0.9, for example, could determine the boundary of

the yolk, which partitions the most typical chairs from the ones that omit or modify some typical
characteristics. The level 0.6 could be the outer edge of the egg. The toilet on the edge of the egg would
have that value. The footstool and the stairs, which are just outside the egg, would have values slightly
less than 0.6. Yet those numbers by themselves cannot distinguish the significant differences between

a folding chair, a rocking chair, a wheelchair, and a chair that has wheels at the bottom of a pod. The
numbers are important for computing with words, but the reasons why those chairs differ from typical
chairs are also important. Mendel (2010) noted “Numbers alone may not activate the CWW engine.”

In the 19th century, William Whewell and John Stuart Mill debated the methods for representing and
reasoning about variability. Whewell (1858) described the practice of biologists, who base their
classifications on a type specimen for each species and a type species for each genus:

Natural groups are given by Type, not by Definition. And this consideration accounts for
that indefiniteness and indecision which we frequently find in the descriptions of such
groups, and which must appear so strange and inconsistent to anyone who does not suppose
these descriptions to assume any deeper ground of connection than an arbitrary choice of
the botanist. Thus in the family of the rose tree, we are told that the ovules are very rarely
erect, the stigmata usually simple. Of what use, it might be asked, can such loose accounts
be? To which the answer is, that they are not inserted to distinguish the species, but in order
to describe the family, and the total relations of the ovules and the stigmata of the family
are better known by this general statement....



Though in a Natural group of objects a definition can no longer be of any use as a
regulative principle, classes are not therefore left quite loose, without any certain standard
or guide. The class is steadily fixed, though not precisely limited; it is given, though not
circumscribed; it is determined, not by a boundary line without, but by a central point
within; not by what it strictly excludes, but by what it eminently includes; by an example,
not by a precept; in short, instead of a Definition we have a Type for our director. (vol. 2,
pp. 120-122)

Mill (1865) dropped the assumption of necessary and sufficient conditions, but he still assumed that
types are defined by a set of features or characters stated in words. He weakened the requirements to a
preponderance of defining characters:

Whatever resembles the genus Rose more than it resembles any other genus, does so
because it possesses a greater number of the characters of that genus, than of the characters
of any other genus. Nor can there be the smallest difficulty in representing, by an
enumeration of characters, the nature and degree of the resemblance which is strictly
sufficient to include any object in the class. There are always some properties common to
all things which are included. Others there often are, to which some things, which are
nevertheless included, are exceptions. But the objects which are exceptions to one character
are not exceptions to another: the resemblance which fails in some particulars must be
made up for in others. The class, therefore, is constituted by the possession of all the
characters which are universal, and most of those which admit of exceptions. (p. 277)

Both Whewell and Mill assume a range of variability in nature, but they propose different ways of
measuring it. Instead of “a boundary line without,” Whewell suggested ““a central point within.” But
that criterion would require some measure of the distance between any instance and the type specimen.
Instead of using a specimen, Mill defined his measure of similarity by enumerating the “characters” of
a definition. In theory, Whewell’s method is closer to nature, since it is based on a specimen taken from
nature. In practice, both methods are based on words. Whewell uses descriptions of specimens, and
Mill uses definitions abstracted from the descriptions. Whewell’s method is one step closer to nature,
but it depends on the words that biologists choose to describe nature.

The psychologist Eleanor Rosch wrote her bachelor’s thesis on Wittgenstein’s classification by family
resemblance and her PhD dissertation on its psychological basis. Rosch and Mervis (1975) concluded
that family resemblances characterize “prototype formation as part of the general process by which
categories themselves are formed.” They cited Zadeh (1965), but their analysis is closer to Whewell
and Mill. They agree with Whewell that prototypes are the basis for classification. But they also give
some support to Mill because the prototypes that people naturally choose are the ones that have the
largest number of attributes or resemblances that characterize the category. These observations suggest
that the cognitive basis for classification is a fuzzy kind of similarity, not rigid definitions or identity
conditions. But if human thought is ultimately fuzzy, how is precise reasoning possible in science and
mathematics?

Unlike Rosch and Mervis, who searched for a cognitive source of fuzziness, Immanuel Kant (1800)
maintained that the open-ended variability of nature is the cause of fuzziness:

Since the synthesis of empirical concepts is not arbitrary but based on experience, and as
such can never be complete (for in experience ever new characteristics of the concept can
be discovered), empirical concepts cannot be defined. Thus only arbitrarily made concepts
can be defined synthetically. Such definitions... could also be called declarations, since in
them one declares one’s thoughts or renders account of what one understands by a word.
This is the case with mathematicians.



In short, a precise definition is only possible when the author has complete control over the subject
matter. But all authors control their subject to some extent. The critical questions are how, why, and
to what extent.

2. Mathematical Language

Most mathematicians and logicians pay little attention to vagueness in ordinary language because their
language is not vague. They are careful to use consistent definitions within a single document, but they
often use different definitions in different documents. Therefore, mathematicians cite or restate the
critical definitions and assumptions in every publication. Even the word number, the most fundamental
in all of mathematics, has a long history of definitions that evolved over the centuries. Figure 2 shows
an egg-yolk diagram for the many meanings of the word number.
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Figure 2. An egg-yolk diagram for the word number

The yolk of Figure 2 shows the positive integers, which were discovered or invented in prehistoric
times. The egg white includes generalizations that can be mixed with the integers in the common
arithmetic operations: rational numbers, irrational numbers, zero, negative numbers, and various
encodings designed for computers. On the border or outside the egg are mathematical systems that
share some of the mathematical operators, but with more variations. All these things called numbers
have a kind of family resemblance, as Wittgenstein (1953 §67) said:

Why do we call something a “number”? Well, perhaps because it has a — direct —
relationship with several things that have hitherto been called number; and this can be said
to give it an indirect relationship to other things we call the same name. And we extend our
concept of number as in spinning a thread we twist fibre on fibre. And the strength of the
thread does not reside in the fact that some one fibre runs through its whole length, but in
the overlapping of many fibres.

Wittgenstein used the word Sprachspiel (language game) for various ways of using language. He
compared the words of language to the pieces in a game of chess. The rules of chess are as precise as
any version of mathematics, but some people define new rules that use the same pieces in a different



way. In mathematics, the oldest games with numbers are counting, simple arithmetic, bookkeeping, and
banking. But mathematicians have used the same symbols for different games, as Figure 2 illustrates.
In each game, precision is possible because all the players agree to a fixed set of rules for using a fixed
set of symbols or pieces. The word number has a precise meaning in each game, but when taken out of
context, the word is ambiguous.

3. Relating Patterns to Patterns

When words are used to express novel experiences, they acquire new meanings or senses. But words
seldom occur in isolation. They normally occur in larger patterns in which the senses of multiple words
shift in a systematic way. Telephones, for example, led to new patterns for the words talk, call, and
conversation. Cell phones enabled new patterns of activities, which led to further shifts in the senses of
the words that express them. Smart phones combine those patterns with modified patterns of words for
activities related to cameras, computers, GPS location, maps, games, television, and shopping. At each
stage, old words are used in novel combinations, such as cell phone and smart phone. But even words
that occur in the old lexical patterns acquire new senses from the novel activities they express.

In science, collections of patterns form theories. In other fields, they are called models, blueprints,
project plans, or syndromes. Whatever they’re called, collections of patterns are expressed in notations
for which precision is important. Yet scientists are always aware of the experimental error, which they
try to limit by carefully controlled experiments. Engineers express their frustration in a pithy slogan:
All models are wrong, but some are useful. To bridge the gap between theories and the world, Figure 3
shows a model as a Janus-like structure, with an engineering side facing the world and an abstract side
facing a theory.
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Figure 3: Relating a theory to the world

On the left is a picture of the physical world, which contains more detail and complexity than any
humanly conceivable model or theory can represent. In the middle is a mathematical model that
represents a domain of individuals D and a set of relations R over individuals in D. If the world had a
unique decomposition into discrete objects and relations, the world itself would be a universal model,
of which all accurate models would be subsets. But the selection of a domain and its decomposition
into objects depend on the intentions of some agent and the limitations of the agent’s measuring
instruments. Even the best models are approximations to a limited aspect of the world for a specific

purpose.



The two-stage mapping from theories to models to the world can reconcile a Tarski-style model theory
with the fuzzy methods pioneered by Lotfi Zadeh. In Tarski’s models, each sentence has only two
possible truth values: {true, false}. In fuzzy logic, a sentence can have a continuous range of values
from 0.0 for certainly false to 1.0 for certainly true. Hedging terms, such as likely, unlikely, very nearly
true, or almost certainly false, represent intermediate values. The two-stage mapping of Figure 3 makes
room for both kinds of reasoning: a rigorous two-valued logic for evaluating the truth of a mathema-
tical theory in terms of a model; and a continuum of fuzzy values that measure the suitability of a
particular model for a specific application. Such two-stage mappings have long been used in science
and engineering: a strict two-valued logic for mathematical reasoning, and a continuum of values for
quantifying experimental error and degree of approximation.

As Peirce said, “Logicians have too much neglected the study of vagueness, not suspecting the
important part it plays in mathematical thought” (CP 5.505). In that same section, he said that the
defining characteristic of a vague sentence is a violation of the law of contradiction: if the sentence s
1s vague, both s and not s can be true. Zadeh drew the following distinction (Mendel et al. 2010):

Fuzzy relates to un-sharpness of class boundaries, while vagueness relates to insufficient
specificity. As an illustration, “I’ll be back in a few minutes” is fuzzy, but not vague.
While “I’ll be back sometime” is both fuzzy and vague... Usually, what is vague is fuzzy,
but not vice-versa.

In practice, the word sometime often becomes never. With that qualification, Zadeh’s examples are
consistent with Peirce’s criterion. But Peirce also distinguished vagueness from generality. For
example, the general word animal is underspecified in comparison to raccoon or beaver, but it’s not
vague: the truth conditions for animal are just as precise as for raccoon or beaver.

In summary, Lotfi Zadeh should be congratulated for introducing a fruitful paradigm that has
stimulated a large body of research with many valuable applications. The CWW methodology has
introduced new ways of analyzing language and applying computable algorithms. But the discussions
in the article by Mendel et al. (2010) show that CWW is unrelated to current linguistic research. More
collaboration could help both fields clarify the sources of fuzziness.
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