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Abstract.  During the past half century, the field of artificial intelligence has developed a large number 
of theories, paradigms, technologies, and tools.  Many AI systems are based on one dominant paradigm 
with a few subsidiary modules for handling exceptions or special cases.  Some systems are built from 
components that perform different tasks, but each component is based on a single paradigm.  Since 
people freely switch from one method of thinking or reasoning to another, some cognitive scientists 
believe that the ability to integrate multiple methods of reasoning is key to human-like flexibility.  In 
his book The Society of Mind, Minsky (1986) presented an architecture for intelligence based on a 
society of heterogeneous agents that use different reasoning methods to solve different problems or 
different aspects of the same problem.  That idea is intriguing, but it raises many serious issues:  how 
to coordinate multiple agents, distribute tasks among them, evaluate their results, encourage agents 
that consistently produce good results, inhibit agents that produce misleading, irrelevant, or unfruitful 
results, and integrate all the results into a coherent response.  The most difficult problem is to enable 
multiple heterogeneous agents, acting independently, to produce the effect of a single mind with a 
unified personality that can pursue and accomplish coherent goals.  This article discusses ways of 
organizing a society of heterogeneous agents as an integrated system with flexible methods of 
reasoning, learning, and language processing. 

This is a slightly revised version of a paper that was published in the proceedings of ICCS 2009, 
edited by S. Rudolph, F. Dau, and S.O. Kuznetsov, LNAI 5662, Springer, pp. 32–47, 2009.

1. Architectures for Intelligent Systems
In the years since its founding conference in 1956, the field of artificial intelligence has generated an 
impressive collection of valuable components, but no comparably successful architecture for 
assembling them into intelligent systems.  The following list illustrates the range of AI components 
that were designed and implemented in the 1950s and ’60s:  

Parsers, theorem provers, inference engines, search engines, learning programs, 
classification tools, statistical tools, neural networks, pattern matchers, analogy finders, 
problem solvers, planning systems, game-playing programs, question-answering systems, 
dialog managers, machine-translation systems, knowledge acquisition tools, modeling 
tools, and robot guidance systems. 

During the past forty years, all these systems have spawned extensions, combinations, and variations. A 
recent handbook covered two dozen systems of logic and knowledge representation, each with multiple 
versions of techniques that tend to be mutually exclusive (Harmelen et al. 2008).  Various AI systems 
use different techniques, but few, if any, take advantage of the full range of options. 

Most large systems are designed around a single paradigm, such as formal deduction, statistical 
language processing, or case-based reasoning. As an example, the largest knowledge-based system, 
Cyc (Lenat 1995), has millions of axioms, grouped in several thousand contexts or microtheories. To 



solve different kinds of problems, Cyc uses a few dozen specialized inference engines, but all of them 
are based on some form of deduction. Partisans of different paradigms have debated their virtues as if 
they were mutually exclusive, yet most of them have complementary strengths and weaknesses. There 
should be some way to take advantage of the best features of any or all of them when appropriate. 

One way to support divergent methods within a common framework is to partition them among 
independent processes that run in separate modules. Any such partition would require some way to 
control the modules and transfer information among them. The fields of AI, computer science, and 
automata theory have developed several techniques: 

Lambda calculus, abstract machines, subroutines, coroutines, object-oriented protocols, 
message passing, associative blackboards, Petri nets, π-calculus. 

Of these, message passing is the most general method for information transfer, and π-calculus (Milner 
1999) is the most general theory for combining control and message passing.  Petri nets, for example, 
can represent single-threaded flow charts, the parallelism of coroutines, object-oriented protocols, and 
a wide range of asynchronous control mechanisms.  Milner showed that π-calculus can simulate the 
mechanisms of both Petri nets and lambda calculus.  But π-calculus goes beyond the fixed graphs of 
Petri nets by allowing new links to be dynamically created and destroyed.  The Linda method of 
passing messages and control through associatively accessed blackboards (Gelernter 1985) can support 
π-calculus by its ability to create and destroy links. 

The Flexible Modular Framework™ (FMF) proposed by Sowa (2002, 2004) is an architecture for 
intelligent systems inspired by The Society of Mind (Minsky 1986), the Elephant 2000 language 
(McCarthy 1989), and the message-passing protocols of computer science.  As in Minsky’s society, 
each FMF module is an autonomous agent that communicates with other agents by passing messages. 
As in McCarthy’s Elephant, messages can be expressed in logic, but a marker for the speech act 
indicates the sender’s intention.  An agent that knows a recipient’s identity can send it a message 
directly, but an agent can find new recipients that can handle a certain kind of message by posting it 
to a Linda blackboard. The FMF message format has six fields: 

1. Language.  An identifier of the language used in the message.  It could be a natural language, 
a version of logic, or any computer-oriented format. 

2. Source.  An identifier of the module or agent that sent the message. 

3. Message ID.  An identifier generated by the sender. 

4. Destination.  An identifier of the intended receiver, if known.  For messages sent to an 
associative blackboard, this field is null; any module that responds to the message would create 
a new link. 

5. Pragmatics.  An identifier of the purpose or speech act:  command, question, response, 
assertion, reminder, agreement, concession, estimate, diagnosis, request, promise, contract, etc. 

6. Message.  Any sentence or list of sentences in the language specified by field #1. 

Most message formats include most of these fields. The two characteristic features of the FMF are the 
null option in field #4 for an associative blackboard and the speech act in field #5, which supports an 
open-ended variety of interaction modes. Without those fields, the FMF can support useful subsets, 
such as dataflow graphs or Petri nets. With associative blackboards, the FMF can dynamically create 
and destroy links among agents. With speech acts, FMF agents can express a wider range of intentions 
than an ordinary command or query. These two fields enable the agents to discover and take advantage 
of an expanding and evolving range of services created by the system. They also enable agents to look 
for alternatives if their familiar collaborators are unable to solve an unusual kind of problem. 



These formats enable the FMF to accommodate arbitrary modules, even legacy systems, by enclosing 
them in a wrapper that maps their inputs and outputs to FMF messages.  Several variations of the FMF 
have been implemented, and they use a lightweight protocol that can be implemented in 8K bytes per 
agent. Thousands of agents can run simultaneously on a laptop computer, but they can communicate 
with other agents anywhere across the Internet.  The messages to and from any user interface have the 
same six fields as all other messages in the FMF.  Therefore, any user interface can be replaced, 
revised, or enhanced dynamically just by rerouting the messages to a different module.  A version of 
the FMF can be implemented in any language that supports communication among multithreaded 
processes.  At VivoMind Intelligence, Inc., several versions of the FMF were implemented in Java and 
a multithreaded version of Prolog.  But an FMF module can send messages across the Internet to FMF 
modules implemented in any combination of hardware and software. 

Experience in implementing and using FMF systems has shown that an architecture based on message 
passing among heterogeneous agents has several advantages over more conventional implementations:  
flexibility of adding new modules without disrupting operations by the old modules; reduction or 
elimination of systemic errors caused by biases in any single algorithm or paradigm; performance 
advantages of a lightweight protocol that can take advantage of multiple CPUs; and fail-soft 
redundancy, which allows most of the agents devoted to a function to continue even if one or more of 
them fail.  Section 2 of this paper describes Minsky’s proposals for a society of agents and ways of 
implementing them.  Section 3 describes an organization of FMF agents in a managerial hierarchy that 
presents a unified personality to the external world. Section 4 describes the use of FMF societies for 
language analysis.  The concluding Section 5 relates the multiple paradigms to Peirce’s semiotics and 
the logic of pragmatism. 

2. The Society of Mind
Systems of multiple agents have been proposed and implemented since the early days of artificial 
intelligence. But the problems of organizing multiple autonomous agents, allocating resources among 
them, getting them to focus on the relevant goals, and integrating many partial contributions into a 
unified result have been challenging: 

• Pandemonium.  Selfridge (1959) designed a system of agents called demons. Each demon 
could observe aspects of the current situation or workspace, perform some computation, and 
put its results back into the workspace. In effect, Pandemonium was a parallel forward-chaining 
reasoner. Its major drawback was that the demons generated large volumes of mostly irrelevant 
data that overflowed storage.  Since then, a  great deal of research has been devoted to measures 
of relevance, methods for motivating agents to produce relevant results, and ways of allocating 
resources to those that consistently produce the best results. 

• Rational agents.  At the opposite extreme from simple demons are rational agents that simulate 
a human-like level of beliefs, desires, intentions, and the ability to reason about them. Van der 
Hoek and Wooldridge (2008) surveyed versions of logic designed to represent groups or 
coalitions of such agents. Such logics may be useful for analyzing or simulating the behavior of 
a group of intelligent agents. But a system with human-like intelligence requires heterogeneous 
modules specialized for different functions, not a coalition of reasoners that all use the same 
logic. 

• Reactive agents.  For designing robots, Brooks (1991) noted that the major challenge was not 
in deliberative planning and reasoning, but in the seemingly simpler insect-like functions of 
perception, locomotion, and goal seeking. That observation stimulated work on reactive agents 



whose intelligence is at the level of ants. A society of such agents can cooperate in defending 
the colony, searching for food, and caring for the eggs and larvae. But no one has shown how a 
colony of ants could understand language or do complex reasoning and planning. 

Complex rational agents and simpler reactive agents operate at different extremes of intelligence. But 
most systems consist of one kind or the other, not a combination of heterogeneous agents. After many 
years of examining different ways of designing and implementing intelligent systems, Minsky (1986) 
argued that no single mechanism, by itself, can adequately support the full range of functions required 
for a human level of intelligence: 

What magical trick makes us intelligent? The trick is that there is no trick. The power of 
intelligence stems from our vast diversity, not from any single, perfect principle. Our 
species has evolved many effective although imperfect methods, and each of us indivi-
dually develops more on our own. Eventually, very few of our actions and decisions come 
to depend on any single mechanism. Instead, they emerge from conflicts and negotiations 
among societies of processes that constantly challenge one another. (Section 30.8) 

In a review and critique of AI systems, Minsky (1991) emphasized that each of the many paradigms 
had made valuable contributions, but that the goal of a homogeneous system built around a single, ideal 
paradigm was too narrow to support the full range of human intelligence: 

The functions performed by the brain are the products of the work of thousands of different, 
specialized sub-systems, the intricate product of hundreds of millions of years of biological 
evolution. We cannot hope to understand such an organization by emulating the techniques 
of those particle physicists who search for the simplest possible unifying conceptions. 
Constructing a mind is simply a different kind of problem — of how to synthesize 
organizational systems that can support a large enough diversity of different schemes, yet 
enable them to work together to exploit one another’s abilities. 

In an earlier paper, Minsky (1980) proposed an administrative organization populated by “mental 
managers” that employ and direct other agents that perform tasks at varying levels of complexity: 

To develop this idea, we will imagine first that this Mental Society works much like any 
human administrative organization. On the largest scale are gross “Divisions” that 
specialize in such areas as sensory processing, language, long-range planning, and so forth. 
Within each Division are multitudes of subspecialists — call them “agents” — that embody 
smaller elements of an individual’s knowledge, skills, and methods. No single one of these 
little agents knows very much by itself, but each recognizes certain configurations of a few 
associates and responds by altering its state. 

As an example of the diversity of modules, Figure 1 shows the interconnections among the kinds of 
modules proposed by linguists. The large box at the bottom would contain a much larger collection of 
modules for all the aspects of cognition and behavior that provide the subject matter and the goals for 
language and reasoning. 



 

Figure 1.  Interconnections among language modules 

The diversity of modules that process language is a subset of the even greater diversity in all aspects of 
cognition and behavior. The integration of language with every aspect of human perception, behavior, 
and social interaction suggests that the language modules are interconnected with other cognitive 
modules in dynamically changing ways. Whatever the organization, the number of modules is 
undoubtedly far greater than the eight boxes of Figure 1. Perhaps there is no limit to the number of 
modules, and every language game and mode of behavior has its own module or even a supermodule 
composed of multiple smaller modules. That organization is radically different from a homogeneous 
system based on a logic that cannot tolerate a single inconsistency. Minsky’s goal was to build a 
flexible, fault-tolerant system out of imperfect, fallible components. Such a system could support logic, 
just as the flexible, fault-tolerant, and fallible human brain supports logic, mathematics, and every 
branch of science, business, and the arts. More recently, Minsky (2006) emphasized the role of 
emotions in driving an engine composed of multiple agents. Without emotions to set the goals, a logic-
based theorem prover would have no reason to do anything. 

As the underlying mechanism for implementing agents, Minsky continued his long-term research on 
neural networks. His newer proposals are based on knowledge lines or K-lines that pass information 
and control to activate agents or even a cascade of agents. In a review of Minsky’s theories, Singh 
(2003) compared the Society of Mind to the SOAR architecture for a “unified theory of cognition” 
(Newell 1990): 

To the developers of SOAR, the interesting question is what are the least set of basic 
mechanisms needed to support the widest range of cognitive processes. The opposing 
argument of the Society of Mind theory is that the space of cognitive processes is so broad 
that no particular set of mechanisms has any special advantage; there will always be some 
things that are easy to implement in your cognitive architecture and other things that are 
hard. Perhaps the question we should be asking is not so much how do you unify all of AI 
into one cognitive architecture, but rather, how do you get several cognitive architectures to 
work together? 

That question is the central theme of Minsky’s book, but Singh concluded that the complexity of the 
ideas and the lack of detail has discouraged implementers:  “While SOAR has seen a series of 



implementations, the Society of Mind theory has not. Minsky chose to discuss many aspects of the 
theory but left many of the details for others to fill in. This, however, has been slow to happen.” 

The lack of detail plagues many proposed models of the mind. In the book What is Thinking? Baum 
(2004) surveys attempts to simulate thinking and includes a dozen citations to Minsky’s Society of  
Mind.  Following Minsky, he assumes “the computation of the mind is rich, with modules connected 
to modules, flowing in complex flow patterns” (p. 35).  Baum views Minsky’s mental managers and 
administrative organizations as participants in an economy guided by Adam Smith’s “invisible hand” 
(p. 241): 

The agents in the economy will be computer programs, initially random computer 
programs.  They will be rewarded by the economy, and the ones that go broke will be 
removed.  New entrepreneurs will enter.  Hopefully, if we get the economic structure right 
so that the individuals are rewarded appropriately, the system will evolve to solve hard 
problems...  Now, we want to look at what’s going on in an economy regarded as an 
evolutionary system consisting of a bunch of agents, each evolving to pursue its own 
interest, each evolving purely to increase its pay-in.  We want to ensure that this evolution 
nonetheless promotes the overall functioning of the whole system. 

Starting evolution from random computer programs would take a long time, but using economic 
rewards as a management tool seems promising.  In fact, the economists Monderer et al. (2001) 
propose game theory for devising reward strategies that could motivate AI agents.  A working system, 
however, requires much more attention to implementation detail. 

3. A Hierarchy of Managers and Employees
The modules of the Flexible Modular Framework can be organized in an open-ended number of ways, 
and various strategies have been implemented and tested. One of the first had a graphic interface that 
allowed a software designer to drag and drop agents on a screen and connect them in a graph that 
resembles a Petri net. That was a useful tool for rapidly assembling modules, but it did not have a 
graphic way of showing the links found by means of associative blackboards. Another application 
replaced the fixed programs of an interactive game with FMF agents. The game graphics and the types 
of characters and machines were unchanged, but the FMF agents gave them more flexible ways of 
interacting, behaving, and communicating. The most general version implemented at VivoMind 
exploits Minsky’s idea of a hierarchy of managers and employees. The chief executive officer (CEO) 
gives the organization a coherent “personality” for external interactions. Beneath the CEO are vice 
presidents in charge of major divisions, directors of important functions, lower-level managers, and 
specialists that perform an open-ended variety of cognitive tasks. As an example, Figure 2 shows the 
upper levels of a hierarchy designed to analyze and interpret natural language texts. 



 

Figure 2.  A management hierarchy of language processing agents 

At the top of Figure 2, the CEO of language understanding is responsible for all functions from the 
analysis of individual words (morphology) to the construction of a “mental model” of the meaning of 
an entire text, which could be a sentence, a paragraph, a conversation, a report, or a book.  Reporting to 
the CEO are vice presidents in charge of the divisions of morphology, syntax, semantics, pragmatics, 
and model building. Beneath the vice presidents are directors in charge of functions such as spelling 
correction in the morphology division and parsing in the syntax division. The semantics division has 
directors of domain ontologies for the detailed axioms of the subject matter and directors of lexical 
resources, such as WordNet, Roget’s Thesaurus, and VerbNet.  For the current implementation, a 
formal ontology for the upper levels has not been helpful.  Detailed reasoning is done with specialized 
ontologies for the subject matter, and the lexical resources have been adequate for mappings between 
English text and the specialized domain ontologies.  The hierarchy shown in Figure 2 is a composite 
that shows the typical functions performed by the agents.  Most of the implementations have more 
levels for middle managers, first-level managers, and specialist employees. 

As in Minsky’s administrative organizations, management control flows down from the CEO at the 
top, many messages flow up and down the hierarchy, but messages can also flow sideways across the 
hierarchy.  In a review of the SOAR architecture, Minsky (1993) observed that the chunking 
mechanism of SOAR corresponds to the production of K-lines in the Society of Mind.  For the 
VivoMind implementations, the basic knowledge representation is conceptual graphs (Sowa 2008). 
Chunking is implemented by a lambda abstraction, which defines a new concept or relation type by a 
conceptual graph (CG) in which one or more concept nodes are identified as formal parameters.  An 
instance chunk is defined by assigning a name to an entity described by a CG.  These mechanisms can 
encode frequently occurring patterns of graphs in single concept or relation nodes. The names or type 
labels correspond to K-lines that link all occurrences of that chunk. 

Minsky maintained that a system of heterogeneous agents should allow agents to use a multiplicity of 
languages tailored for their purposes.  The language field in an FMF message supports an open-ended 
variety of languages, but the Conceptual Graph Interchange Format (CGIF) is the lingua franca for 
reasoning and language processing.  Two agents implemented in the same language, such as Prolog, 
can also exchange the equivalent information in their native language format.  An untranslated input 
language can be represented by a concept node whose referent is an uninterpreted character string: 
   [EnglishSentence: "This is an example of an English sentence."]



Minsky (1991) claimed that an AI system should support “neat” methods based on formal logics as 
well as “scruffy” methods based on informal heuristics.  With current technology, any translation from 
an unrestricted natural language is at best a useful, but scruffy approximation.  Some FMF applications 
also use a version of Common Logic Controlled English (CLCE), which has an unambiguous mapping 
to conceptual graphs whose semantics are defined by the Common Logic standard (ISO/IEC 24707). 
Anyone who can read English can read a CLCE statement, but some training in logic is necessary to 
write syntactically correct CLCE.  With a clarification dialog, a person who is not a trained CLCE 
author can work with a help facility to convert an informal English sentence to a CLCE statement that 
both the human and the computer can accept.  For many applications, however, a scruffy translation 
from ordinary English can be valuable (Majumdar et al. 2008). 

Singh (2003) noted the pitfalls of relying on blackboards as the primary method of communication 
among agents:  “While the blackboard metaphor may work when there are only a few agents using the 
blackboard, by the time there are hundreds of agents, let alone thousands or millions, the image of them 
huddled around a blackboard is no longer reasonable, and in fact no one has built a blackboard system 
of this scale.”  For that reason, most FMF messages are sent to a known recipient, but an FMF system 
can have an open-ended number of blackboards, which may be used in various ways: 

1. Newsletter.  Any agent that manages other agents may set up a blackboard for notes that 
members of the department may post to any or all members of the group.  The CEO might use 
global newsletters to announce information that could be accessed by any agents in the 
hierarchy, or even by unemployed “freelance” agents. 

2. Agenda.  A blackboard may serve as a queue of tasks to be done, and any available agent that 
can handle a task could remove it from the queue and do it.  Some kinds of jobs could be 
performed by multiple agents, and a manager might let several perform the job and select the 
best results. 

3. Want ads.  A manager could post a job description to a global blackboard accessed by freelance 
agents that might offer their services. 

4. Classified advertising.  Freelance agents might offer to sell data or hypotheses on blackboards 
that are specialized for a variety of purposes. 

5. Committees.  Blackboards used for collaborative reasoning would normally be restricted to a 
small group of agents that resemble a committee.  Such a group would fit the metaphor of 
collaborators “huddled around a blackboard.”  Committees form a collaborative environment 
where agents can evaluate options, vote for their preferences, or negotiate to combine them. 

Variations of these five uses for FMF blackboards have been implemented in systems for language and 
reasoning (Majumdar et al. 2008) and in a game-playing system for knowledge capture (Majumdar et 
al. 2007).  For each agent, one local blackboard is the default.  An agent can access other blackboards 
indirectly by sending a request to an agent for which the desired blackboard is local.

At VivoMind, the authors have developed a technique called Market-Driven Learning™ (MDL), which 
rewards agents with resources:  computer space and time to perform their services.  A hierarchy that 
reports to a CEO can earn resources by providing services to external users or systems.  The CEO 
distributes resources as rewards to the vice presidents, who distribute their allotment to the managers 
that report to them.  The managers can use their resources to hire employees, reward employees for 
good performance, or buy data and hypotheses from freelance agents or from other managers.  The 
managers may combine the data and hypotheses themselves or assign their employees the task of doing 
the combination.  Managers can also serve on committees to negotiate for resources or to produce 
committee reports to be sent up the hierarchy.  Managers at each level of the hierarchy receive rewards 



from higher levels, they reward their employees for what they produce, they can hire new employees or 
fire unproductive employees, and they can buy or sell data and services by sideways transfers to other 
managers. 

An MDL society learns by reorganizing itself to produce improved results, which humans or other 
agents are willing to buy. The reward system addresses the basic problems faced by Pandemonium:  
increasing resources for the most productive agents; reducing resources for the less productive agents; 
and reorganizing the hierarchy by growing the more productive branches and shrinking the less 
productive branches. The rewards pass through the management hierarchy to create an effect similar to 
the backward propagation learning of a neural network. But unlike the simple switches and numeric 
functions of a neural network, MDL agents can be arbitrarily complex programs or reasoning systems, 
they can hire or fire other agents, and the messages can be propositions or even large documents stated 
in some version of logic. If the messages are stated in a dialect of Common Logic, they could be 
translated to CLCE in order to provide humanly readable explanations or an “audit trail” about the way 
the FMF system derived its data, hypotheses, and reports. These options are not possible with the 
numeric weighting schemes of most neural networks. (Note, however, that individual agents in an FMF 
system could use any computing mechanism internally, including neural networks. But such agents 
would communicate with other FMF agents by the usual FMF message formats.) 

4. Interpreting Natural Languages
A system that interprets natural language must take into account all the aspects of language covered by 
the eight boxes in Figure 1.  As that diagram suggests, every aspect is related, directly or indirectly, to 
every other aspect.  Psycholinguistic studies indicate that people process all those aspects concurrently, 
and brain scans indicate that different aspects seem to be processed in different parts of the brain.  None 
of the psychological or neurological studies, however, are sufficiently detailed to show the internal data 
formats or the kinds of operations performed on that data.  As a working hypothesis, many linguists and 
computational linguists have assumed that the underlying conceptual structures can be conveniently 
represented by labeled graphs, possibly with nested graphs within graphs.  That assumption is very 
general, since it includes most of the alternatives as special cases:  strings, trees, feature structures, and 
various notations for logic.  Conceptual graphs are a semantic representation influenced by the research 
in linguistics, logic, psycholinguistics, and computational linguistics (Sowa 1984, 2008).  They can 
represent ISO standard Common Logic as a proper subset, but they can also be processed by scruffy 
heuristics. 

For the VivoMind implementations, conceptual graphs are generated in the semantics division in the 
center of Figure 2, and they are further elaborated in the pragmatics and model-building divisions at the 
right.  For any input text, the morphology and syntax divisions at the left usually begin the processing, 
but the VP agents that manage the other divisions run concurrently.  Therefore, they can begin to make 
partial contributions to the analysis before the morphology and syntax agents have finished the 
sentence.  As an example, the following sentence appeared in a text about oil and gas exploration: 

The Diana field is situated in the western Gulf of Mexico 
260 km (160 mi) south of Galveston 
in approximately 1430 m (4700 ft) of water. 

If the sentence had ended with the word Mexico, the syntax would be unambiguous.  But the measures 
in the next two lines, the parenthetical expressions, and the points for attaching prepositional phrases 
create ambiguities.  Is Diana field or the Gulf of Mexico south of Galveston?  What is in the water? 
Diana field, the Gulf of Mexico, or Galveston?  After a devastating hurricane, Galveston was under 
water, but background knowledge should imply that cities are usually not under water. 



Agents that process lexical information, context, heuristics, and domain knowledge contribute to the 
interpretation.  A morphology agent expands “ft” to “feet”.  An ontology for the geoscience domain 
indicates that Diana field is a reservoir, which consists of rocks that trap hydrocarbons; such a reservoir 
is underground; and the ground may be under water.  Parenthesized expressions are usually 
idiosyncratic and ad hoc.  One agent detected measures that were approximately equal, but stated in 
different units.  Therefore, it made the hypothesis that the parenthesized expressions were intended to 
express equality.  During the parsing process, the agents can create multiple links as tentative 
hypotheses.  A manager in charge of those agents evaluates the evidence for each alternative and prunes 
away the unlikely options.  The remaining links indicate that Diana field is south of Galveston and in 
the water. 

Many different syntactic parsers have been used to generate conceptual graphs.  But theories that focus 
on the connections between words, such as dependency grammars and link grammars, are convenient 
because their links map directly to the nodes and arcs of CGs.  Several different parsers have been 
implemented at VivoMind, and the ones based on link grammar (Sleator & Temperley 1993) have been 
the easiest to combine with graph operations for semantics.  The latest VivoMind parser is based on 
link grammar, but influenced by a distributed concurrent parser called ParseTalk (Hahn et al. 1994, 
2000).  Instead of the static global control of conventional parsers, ParseTalk has a “dynamic, local-
control model” that supports “a balanced treatment of both declarative and procedural constructs 
within a single formal framework.”  The ParseTalk control structure is based on actors implemented in 
an object-oriented language (Smalltalk).  Bröker (1999) added semantic actors to the original syntactic 
actors of ParseTalk.  The actors enable it to process  multiple syntactic constraints and knowledge 
sources concurrently.  Zeman and Žabokrtský (2005) combined the results of multiple dependency 
parsers by a committee that used voting and learning.  The committee choices were significantly more 
accurate than the results of the best parser by itself.

The ParseTalk actors and the FMF agents have similar advantages, but the object-oriented actors are 
more tightly coupled than the heterogeneous FMF agents.  As the developers said, ParseTalk has “a 
single formal framework.”  For the FMF agents, the only thing that is common to all of them is the 
message format with six fields.  Different agents can use different languages, different paradigms, and 
even different hardware located on different continents.  The loose coupling of the FMF agents makes 
it easy to add new agents with new capability without disrupting any of the older functions; it also 
enables the system to continue if some agent or agents fail.  In some applications, one or more FMF 
agents failed, but the system continued to run without their input.  Eventually, the manager of the 
agents restarted them. 

5. Reasoning with Multiple Paradigms
Deduction is the most common method of reasoning used with logic-based systems.  But deduction is 
precise, predictable, and brittle.  If everything is perfect, deduction is perfect.  Such perfection is only 
achievable in pure mathematics.  For normal, imperfect computer applications, deduction can magnify 
and propagate any imperfection to the point of a total collapse.  When people reason, they seldom carry 
out long chains of deductions, and they often perform a “sanity check” to avoid obvious errors.  If a 
conclusion seems odd, a prudent individual would ask for advice or try an alternative method of 
reasoning.  People don’t expect every message to be completely understood.  They ask questions, give 
explanations, negotiate, and compromise.  In short, they use multiple paradigms to cross-check their 
results and avoid the biases that tend to occur with just a single paradigm.  Bundy and McNeill (2006) 
maintain that intelligent systems must have a similar ability to revise, repair, and refine their axioms to 
accommodate the inevitable exceptions, discrepancies, and aberrations. 



Frege and Peirce were pioneers in logic, who independently discovered equivalent representations for 
full first-order logic.  But they had different goals for logic.  Frege applied his logic to mathematics, 
for which deduction is the primary method of reasoning.  But Peirce used logic in a much broader 
range of applications, including scientific discovery, philosophical analysis, and the definition of words 
in linguistics and lexicography.  In addition to deduction, Peirce emphasized the use of induction in 
generalizing from examples and abduction in forming hypotheses or educated guesses.  Unlike many 
logicians who viewed metaphors and analogies with suspicion, Peirce (1902) included analogy as one 
of the four methods of reasoning:  “Besides these three types of reasoning there is a fourth, analogy, 
which combines the characters of the three, yet cannot be adequately represented as composite.” 
Figure 3 is a diagram of Peirce’s cycle of reasoning, inspired by his lectures on pragmatism (1903). 

 

Figure 3.  Peirce’s cycle of pragmatism 

Note that deduction is a small part of the cycle.  By itself, deduction can only derive the consequences 
of already familiar assumptions.  Induction forms generalizations from specific instances, abduction 
supports guessing or hypothesis formation, revision accommodates exceptions, and testing keeps 
reasoning grounded in reality.  Analogy combines aspects of the other methods of reasoning, and it 
can be used by itself as the primary method for informal reasoning.  The brain in Figure 3, labeled 
cognitive memory, represents an open-ended associative store of all the knowledge and data acquired 
by a system, natural or artificial.  In capital letters, Cognitive Memory™ is a high-performance 
associative memory developed by VivoMind. 

A critical component of any intelligent reasoner is a high-speed associative memory for finding 
relevant chunks, K-lines, schemata, or other patterns of knowledge. For conceptual graphs, that would 



require a high-speed method for indexing and finding relevant graphs and subgraphs. Some of the most 
advanced research on processing graphs has been done by chemists, who need to classify and search 
for millions of graphs of organic molecules.  An application of chemical algorithms to conceptual 
graphs led to the first high-speed method for classifying and finding conceptual graphs (Levinson & 
Ellis 1992); one implementation of that method was used in the web site of a large online retailer 
(Sarraf & Ellis 2006). More recent work on chemical graphs has produced algorithms for encoding 
both the graph structure and the labels in numeric vectors, indexing the encodings, and finding all 
graphs within a small semantic distance of a given query graph (Rhodes et al. 2007); those algorithms 
are being used to index and search a database of over four million chemical graphs. Those techniques 
resemble the methods for indexing conceptual graphs and finding analogous graphs in logarithmic time 
(Sowa & Majumdar 2003): 

1. Convert each graph to a unique linear representation. For a chemical graph, the conversion is 
based on its International Chemical Identifier (InChI). Similar conversions can be applied to 
labeled graphs of any kind. 

2. Map the linear form to numeric vectors that encode both the graph structure and the ontology 
(labels) on the nodes and arcs. 

3. Use a measure of semantic distance between the vectors. For conceptual graphs, that measure 
takes into account both the structure (ordering, connectivity, and cycles) and the ontology (type 
labels and hierarchy). For chemical graphs, similar structural properties are used, but the 
ontology is based on the properties of atoms and chemical bonds. 

4. Use the semantic distance measure to index the graphs and find graphs within a given distance 
(threshold). 

For conceptual graphs, the time to build the index is proportional to (N log N), where N is the number 
of graphs.  The time to find graphs that are similar to a given query graph is proportional to (log N). 
If more than one graph is found within a given threshold, structure-mapping algorithms can be used 
(Falkenhainer et al. 1989), but it’s often faster to distinguish graphs by applying semantic operations 
directly to the encodings. 

The Flexible Modular Framework with multiple heterogeneous agents has proved to be a flexible, 
robust, and efficient system for learning, reasoning, and language processing.  The six-field message 
format together with associative blackboards supports the computational power of the π-calculus.  The 
Cognitive Memory system provides a high-speed resource for analogy finding, case-based reasoning, 
and associative access to knowledge and information of any kind — including facts and axioms stated 
in Common Logic and transmitted in CGIF.  The Market Driven Learning methods with the rewards of 
resources for good performance extend the π-calculus to a version of the $-calculus or cost-calculus by 
Eberbach et al. (2004).  A cost measure based on space and time requirements can constrain the 
excesses of systems like Pandemonium and direct agents toward promising goals.  Turing (1939) 
showed that a Turing machine that could ask for information from a external oracle was more powerful 
than a Turing machine in isolation.  Eberbach et al. claimed that messages from external agents or the 
environment could serve as the equivalent of an oracle to go beyond the limitations of a Turing 
machine.  Whatever the theoretical power, the FMF with these additions has served as a practical tool 
for rapidly building intelligent systems. 
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