
Two Paradigms Are Better Than One,
And Multiple Paradigms Are Even Better

Arun K. Majumdar and John F. Sowa
 VivoMind Intelligence, Inc.

Abstract. During the past half century, the field of artificial intelligence has developed a large number
of theories, paradigms, technologies, and tools. Many AI systems are based on one dominant paradigm
with a few subsidiary modules for handling exceptions or special cases. Some systems are built from
components that perform different tasks, but each component is based on a single paradigm. Since
people freely switch from one method of thinking or reasoning to another, some cognitive scientists
believe that the ability to integrate multiple methods of reasoning is key to human-like flexibility. In
his book The Society of Mind, Minsky (1986) presented an architecture for intelligence based on a
society of heterogeneous agents that use different reasoning methods to solve different problems or
different aspects of the same problem. That idea is intriguing, but it raises many serious issues: how
to coordinate multiple agents, distribute tasks among them, evaluate their results, encourage agents
that consistently produce good results, inhibit agents that produce misleading, irrelevant, or unfruitful
results, and integrate all the results into a coherent response. The most difficult problem is to enable
multiple heterogeneous agents, acting independently, to produce the effect of a single mind with a
unified personality that can pursue and accomplish coherent goals. This article discusses ways of
organizing a society of heterogeneous agents as an integrated system with flexible methods of
reasoning, learning, and language processing.

This is a slightly revised version of a paper that was published in the proceedings of ICCS 2009,
edited by S. Rudolph, F. Dau, and S.O. Kuznetsov, LNAI 5662, Springer, pp. 32–47, 2009.

1. Architectures for Intelligent Systems
In the years since its founding conference in 1956, the field of artificial intelligence has generated an
impressive collection of valuable components, but no comparably successful architecture for
assembling them into intelligent systems. The following list illustrates the range of AI components
that were designed and implemented in the 1950s and ’60s:

Parsers, theorem provers, inference engines, search engines, learning programs,
classification tools, statistical tools, neural networks, pattern matchers, analogy finders,
problem solvers, planning systems, game-playing programs, question-answering systems,
dialog managers, machine-translation systems, knowledge acquisition tools, modeling
tools, and robot guidance systems.

During the past forty years, all these systems have spawned extensions, combinations, and variations. A
recent handbook covered two dozen systems of logic and knowledge representation, each with multiple
versions of techniques that tend to be mutually exclusive (Harmelen et al. 2008). Various AI systems
use different techniques, but few, if any, take advantage of the full range of options.

Most large systems are designed around a single paradigm, such as formal deduction, statistical
language processing, or case-based reasoning. As an example, the largest knowledge-based system,
Cyc (Lenat 1995), has millions of axioms, grouped in several thousand contexts or microtheories. To

solve different kinds of problems, Cyc uses a few dozen specialized inference engines, but all of them
are based on some form of deduction. Partisans of different paradigms have debated their virtues as if
they were mutually exclusive, yet most of them have complementary strengths and weaknesses. There
should be some way to take advantage of the best features of any or all of them when appropriate.

One way to support divergent methods within a common framework is to partition them among
independent processes that run in separate modules. Any such partition would require some way to
control the modules and transfer information among them. The fields of AI, computer science, and
automata theory have developed several techniques:

Lambda calculus, abstract machines, subroutines, coroutines, object-oriented protocols,
message passing, associative blackboards, Petri nets, π-calculus.

Of these, message passing is the most general method for information transfer, and π-calculus (Milner
1999) is the most general theory for combining control and message passing. Petri nets, for example,
can represent single-threaded flow charts, the parallelism of coroutines, object-oriented protocols, and
a wide range of asynchronous control mechanisms. Milner showed that π-calculus can simulate the
mechanisms of both Petri nets and lambda calculus. But π-calculus goes beyond the fixed graphs of
Petri nets by allowing new links to be dynamically created and destroyed. The Linda method of
passing messages and control through associatively accessed blackboards (Gelernter 1985) can support
π-calculus by its ability to create and destroy links.

The Flexible Modular Framework™ (FMF) proposed by Sowa (2002, 2004) is an architecture for
intelligent systems inspired by The Society of Mind (Minsky 1986), the Elephant 2000 language
(McCarthy 1989), and the message-passing protocols of computer science. As in Minsky’s society,
each FMF module is an autonomous agent that communicates with other agents by passing messages.
As in McCarthy’s Elephant, messages can be expressed in logic, but a marker for the speech act
indicates the sender’s intention. An agent that knows a recipient’s identity can send it a message
directly, but an agent can find new recipients that can handle a certain kind of message by posting it
to a Linda blackboard. The FMF message format has six fields:

1. Language. An identifier of the language used in the message. It could be a natural language,
a version of logic, or any computer-oriented format.

2. Source. An identifier of the module or agent that sent the message.

3. Message ID. An identifier generated by the sender.

4. Destination. An identifier of the intended receiver, if known. For messages sent to an
associative blackboard, this field is null; any module that responds to the message would create
a new link.

5. Pragmatics. An identifier of the purpose or speech act: command, question, response,
assertion, reminder, agreement, concession, estimate, diagnosis, request, promise, contract, etc.

6. Message. Any sentence or list of sentences in the language specified by field #1.

Most message formats include most of these fields. The two characteristic features of the FMF are the
null option in field #4 for an associative blackboard and the speech act in field #5, which supports an
open-ended variety of interaction modes. Without those fields, the FMF can support useful subsets,
such as dataflow graphs or Petri nets. With associative blackboards, the FMF can dynamically create
and destroy links among agents. With speech acts, FMF agents can express a wider range of intentions
than an ordinary command or query. These two fields enable the agents to discover and take advantage
of an expanding and evolving range of services created by the system. They also enable agents to look
for alternatives if their familiar collaborators are unable to solve an unusual kind of problem.

These formats enable the FMF to accommodate arbitrary modules, even legacy systems, by enclosing
them in a wrapper that maps their inputs and outputs to FMF messages. Several variations of the FMF
have been implemented, and they use a lightweight protocol that can be implemented in 8K bytes per
agent. Thousands of agents can run simultaneously on a laptop computer, but they can communicate
with other agents anywhere across the Internet. The messages to and from any user interface have the
same six fields as all other messages in the FMF. Therefore, any user interface can be replaced,
revised, or enhanced dynamically just by rerouting the messages to a different module. A version of
the FMF can be implemented in any language that supports communication among multithreaded
processes. At VivoMind Intelligence, Inc., several versions of the FMF were implemented in Java and
a multithreaded version of Prolog. But an FMF module can send messages across the Internet to FMF
modules implemented in any combination of hardware and software.

Experience in implementing and using FMF systems has shown that an architecture based on message
passing among heterogeneous agents has several advantages over more conventional implementations:
flexibility of adding new modules without disrupting operations by the old modules; reduction or
elimination of systemic errors caused by biases in any single algorithm or paradigm; performance
advantages of a lightweight protocol that can take advantage of multiple CPUs; and fail-soft
redundancy, which allows most of the agents devoted to a function to continue even if one or more of
them fail. Section 2 of this paper describes Minsky’s proposals for a society of agents and ways of
implementing them. Section 3 describes an organization of FMF agents in a managerial hierarchy that
presents a unified personality to the external world. Section 4 describes the use of FMF societies for
language analysis. The concluding Section 5 relates the multiple paradigms to Peirce’s semiotics and
the logic of pragmatism.

2. The Society of Mind
Systems of multiple agents have been proposed and implemented since the early days of artificial
intelligence. But the problems of organizing multiple autonomous agents, allocating resources among
them, getting them to focus on the relevant goals, and integrating many partial contributions into a
unified result have been challenging:

• Pandemonium. Selfridge (1959) designed a system of agents called demons. Each demon
could observe aspects of the current situation or workspace, perform some computation, and
put its results back into the workspace. In effect, Pandemonium was a parallel forward-chaining
reasoner. Its major drawback was that the demons generated large volumes of mostly irrelevant
data that overflowed storage. Since then, a great deal of research has been devoted to measures
of relevance, methods for motivating agents to produce relevant results, and ways of allocating
resources to those that consistently produce the best results.

• Rational agents. At the opposite extreme from simple demons are rational agents that simulate
a human-like level of beliefs, desires, intentions, and the ability to reason about them. Van der
Hoek and Wooldridge (2008) surveyed versions of logic designed to represent groups or
coalitions of such agents. Such logics may be useful for analyzing or simulating the behavior of
a group of intelligent agents. But a system with human-like intelligence requires heterogeneous
modules specialized for different functions, not a coalition of reasoners that all use the same
logic.

• Reactive agents. For designing robots, Brooks (1991) noted that the major challenge was not
in deliberative planning and reasoning, but in the seemingly simpler insect-like functions of
perception, locomotion, and goal seeking. That observation stimulated work on reactive agents

whose intelligence is at the level of ants. A society of such agents can cooperate in defending
the colony, searching for food, and caring for the eggs and larvae. But no one has shown how a
colony of ants could understand language or do complex reasoning and planning.

Complex rational agents and simpler reactive agents operate at different extremes of intelligence. But
most systems consist of one kind or the other, not a combination of heterogeneous agents. After many
years of examining different ways of designing and implementing intelligent systems, Minsky (1986)
argued that no single mechanism, by itself, can adequately support the full range of functions required
for a human level of intelligence:

What magical trick makes us intelligent? The trick is that there is no trick. The power of
intelligence stems from our vast diversity, not from any single, perfect principle. Our
species has evolved many effective although imperfect methods, and each of us indivi-
dually develops more on our own. Eventually, very few of our actions and decisions come
to depend on any single mechanism. Instead, they emerge from conflicts and negotiations
among societies of processes that constantly challenge one another. (Section 30.8)

In a review and critique of AI systems, Minsky (1991) emphasized that each of the many paradigms
had made valuable contributions, but that the goal of a homogeneous system built around a single, ideal
paradigm was too narrow to support the full range of human intelligence:

The functions performed by the brain are the products of the work of thousands of different,
specialized sub-systems, the intricate product of hundreds of millions of years of biological
evolution. We cannot hope to understand such an organization by emulating the techniques
of those particle physicists who search for the simplest possible unifying conceptions.
Constructing a mind is simply a different kind of problem — of how to synthesize
organizational systems that can support a large enough diversity of different schemes, yet
enable them to work together to exploit one another’s abilities.

In an earlier paper, Minsky (1980) proposed an administrative organization populated by “mental
managers” that employ and direct other agents that perform tasks at varying levels of complexity:

To develop this idea, we will imagine first that this Mental Society works much like any
human administrative organization. On the largest scale are gross “Divisions” that
specialize in such areas as sensory processing, language, long-range planning, and so forth.
Within each Division are multitudes of subspecialists — call them “agents” — that embody
smaller elements of an individual’s knowledge, skills, and methods. No single one of these
little agents knows very much by itself, but each recognizes certain configurations of a few
associates and responds by altering its state.

As an example of the diversity of modules, Figure 1 shows the interconnections among the kinds of
modules proposed by linguists. The large box at the bottom would contain a much larger collection of
modules for all the aspects of cognition and behavior that provide the subject matter and the goals for
language and reasoning.

Figure 1. Interconnections among language modules

The diversity of modules that process language is a subset of the even greater diversity in all aspects of
cognition and behavior. The integration of language with every aspect of human perception, behavior,
and social interaction suggests that the language modules are interconnected with other cognitive
modules in dynamically changing ways. Whatever the organization, the number of modules is
undoubtedly far greater than the eight boxes of Figure 1. Perhaps there is no limit to the number of
modules, and every language game and mode of behavior has its own module or even a supermodule
composed of multiple smaller modules. That organization is radically different from a homogeneous
system based on a logic that cannot tolerate a single inconsistency. Minsky’s goal was to build a
flexible, fault-tolerant system out of imperfect, fallible components. Such a system could support logic,
just as the flexible, fault-tolerant, and fallible human brain supports logic, mathematics, and every
branch of science, business, and the arts. More recently, Minsky (2006) emphasized the role of
emotions in driving an engine composed of multiple agents. Without emotions to set the goals, a logic-
based theorem prover would have no reason to do anything.

As the underlying mechanism for implementing agents, Minsky continued his long-term research on
neural networks. His newer proposals are based on knowledge lines or K-lines that pass information
and control to activate agents or even a cascade of agents. In a review of Minsky’s theories, Singh
(2003) compared the Society of Mind to the SOAR architecture for a “unified theory of cognition”
(Newell 1990):

To the developers of SOAR, the interesting question is what are the least set of basic
mechanisms needed to support the widest range of cognitive processes. The opposing
argument of the Society of Mind theory is that the space of cognitive processes is so broad
that no particular set of mechanisms has any special advantage; there will always be some
things that are easy to implement in your cognitive architecture and other things that are
hard. Perhaps the question we should be asking is not so much how do you unify all of AI
into one cognitive architecture, but rather, how do you get several cognitive architectures to
work together?

That question is the central theme of Minsky’s book, but Singh concluded that the complexity of the
ideas and the lack of detail has discouraged implementers: “While SOAR has seen a series of

implementations, the Society of Mind theory has not. Minsky chose to discuss many aspects of the
theory but left many of the details for others to fill in. This, however, has been slow to happen.”

The lack of detail plagues many proposed models of the mind. In the book What is Thinking? Baum
(2004) surveys attempts to simulate thinking and includes a dozen citations to Minsky’s Society of
Mind. Following Minsky, he assumes “the computation of the mind is rich, with modules connected
to modules, flowing in complex flow patterns” (p. 35). Baum views Minsky’s mental managers and
administrative organizations as participants in an economy guided by Adam Smith’s “invisible hand”
(p. 241):

The agents in the economy will be computer programs, initially random computer
programs. They will be rewarded by the economy, and the ones that go broke will be
removed. New entrepreneurs will enter. Hopefully, if we get the economic structure right
so that the individuals are rewarded appropriately, the system will evolve to solve hard
problems... Now, we want to look at what’s going on in an economy regarded as an
evolutionary system consisting of a bunch of agents, each evolving to pursue its own
interest, each evolving purely to increase its pay-in. We want to ensure that this evolution
nonetheless promotes the overall functioning of the whole system.

Starting evolution from random computer programs would take a long time, but using economic
rewards as a management tool seems promising. In fact, the economists Monderer et al. (2001)
propose game theory for devising reward strategies that could motivate AI agents. A working system,
however, requires much more attention to implementation detail.

3. A Hierarchy of Managers and Employees
The modules of the Flexible Modular Framework can be organized in an open-ended number of ways,
and various strategies have been implemented and tested. One of the first had a graphic interface that
allowed a software designer to drag and drop agents on a screen and connect them in a graph that
resembles a Petri net. That was a useful tool for rapidly assembling modules, but it did not have a
graphic way of showing the links found by means of associative blackboards. Another application
replaced the fixed programs of an interactive game with FMF agents. The game graphics and the types
of characters and machines were unchanged, but the FMF agents gave them more flexible ways of
interacting, behaving, and communicating. The most general version implemented at VivoMind
exploits Minsky’s idea of a hierarchy of managers and employees. The chief executive officer (CEO)
gives the organization a coherent “personality” for external interactions. Beneath the CEO are vice
presidents in charge of major divisions, directors of important functions, lower-level managers, and
specialists that perform an open-ended variety of cognitive tasks. As an example, Figure 2 shows the
upper levels of a hierarchy designed to analyze and interpret natural language texts.

Figure 2. A management hierarchy of language processing agents

At the top of Figure 2, the CEO of language understanding is responsible for all functions from the
analysis of individual words (morphology) to the construction of a “mental model” of the meaning of
an entire text, which could be a sentence, a paragraph, a conversation, a report, or a book. Reporting to
the CEO are vice presidents in charge of the divisions of morphology, syntax, semantics, pragmatics,
and model building. Beneath the vice presidents are directors in charge of functions such as spelling
correction in the morphology division and parsing in the syntax division. The semantics division has
directors of domain ontologies for the detailed axioms of the subject matter and directors of lexical
resources, such as WordNet, Roget’s Thesaurus, and VerbNet. For the current implementation, a
formal ontology for the upper levels has not been helpful. Detailed reasoning is done with specialized
ontologies for the subject matter, and the lexical resources have been adequate for mappings between
English text and the specialized domain ontologies. The hierarchy shown in Figure 2 is a composite
that shows the typical functions performed by the agents. Most of the implementations have more
levels for middle managers, first-level managers, and specialist employees.

As in Minsky’s administrative organizations, management control flows down from the CEO at the
top, many messages flow up and down the hierarchy, but messages can also flow sideways across the
hierarchy. In a review of the SOAR architecture, Minsky (1993) observed that the chunking
mechanism of SOAR corresponds to the production of K-lines in the Society of Mind. For the
VivoMind implementations, the basic knowledge representation is conceptual graphs (Sowa 2008).
Chunking is implemented by a lambda abstraction, which defines a new concept or relation type by a
conceptual graph (CG) in which one or more concept nodes are identified as formal parameters. An
instance chunk is defined by assigning a name to an entity described by a CG. These mechanisms can
encode frequently occurring patterns of graphs in single concept or relation nodes. The names or type
labels correspond to K-lines that link all occurrences of that chunk.

Minsky maintained that a system of heterogeneous agents should allow agents to use a multiplicity of
languages tailored for their purposes. The language field in an FMF message supports an open-ended
variety of languages, but the Conceptual Graph Interchange Format (CGIF) is the lingua franca for
reasoning and language processing. Two agents implemented in the same language, such as Prolog,
can also exchange the equivalent information in their native language format. An untranslated input
language can be represented by a concept node whose referent is an uninterpreted character string:
 [EnglishSentence: "This is an example of an English sentence."]

Minsky (1991) claimed that an AI system should support “neat” methods based on formal logics as
well as “scruffy” methods based on informal heuristics. With current technology, any translation from
an unrestricted natural language is at best a useful, but scruffy approximation. Some FMF applications
also use a version of Common Logic Controlled English (CLCE), which has an unambiguous mapping
to conceptual graphs whose semantics are defined by the Common Logic standard (ISO/IEC 24707).
Anyone who can read English can read a CLCE statement, but some training in logic is necessary to
write syntactically correct CLCE. With a clarification dialog, a person who is not a trained CLCE
author can work with a help facility to convert an informal English sentence to a CLCE statement that
both the human and the computer can accept. For many applications, however, a scruffy translation
from ordinary English can be valuable (Majumdar et al. 2008).

Singh (2003) noted the pitfalls of relying on blackboards as the primary method of communication
among agents: “While the blackboard metaphor may work when there are only a few agents using the
blackboard, by the time there are hundreds of agents, let alone thousands or millions, the image of them
huddled around a blackboard is no longer reasonable, and in fact no one has built a blackboard system
of this scale.” For that reason, most FMF messages are sent to a known recipient, but an FMF system
can have an open-ended number of blackboards, which may be used in various ways:

1. Newsletter. Any agent that manages other agents may set up a blackboard for notes that
members of the department may post to any or all members of the group. The CEO might use
global newsletters to announce information that could be accessed by any agents in the
hierarchy, or even by unemployed “freelance” agents.

2. Agenda. A blackboard may serve as a queue of tasks to be done, and any available agent that
can handle a task could remove it from the queue and do it. Some kinds of jobs could be
performed by multiple agents, and a manager might let several perform the job and select the
best results.

3. Want ads. A manager could post a job description to a global blackboard accessed by freelance
agents that might offer their services.

4. Classified advertising. Freelance agents might offer to sell data or hypotheses on blackboards
that are specialized for a variety of purposes.

5. Committees. Blackboards used for collaborative reasoning would normally be restricted to a
small group of agents that resemble a committee. Such a group would fit the metaphor of
collaborators “huddled around a blackboard.” Committees form a collaborative environment
where agents can evaluate options, vote for their preferences, or negotiate to combine them.

Variations of these five uses for FMF blackboards have been implemented in systems for language and
reasoning (Majumdar et al. 2008) and in a game-playing system for knowledge capture (Majumdar et
al. 2007). For each agent, one local blackboard is the default. An agent can access other blackboards
indirectly by sending a request to an agent for which the desired blackboard is local.

At VivoMind, the authors have developed a technique called Market-Driven Learning™ (MDL), which
rewards agents with resources: computer space and time to perform their services. A hierarchy that
reports to a CEO can earn resources by providing services to external users or systems. The CEO
distributes resources as rewards to the vice presidents, who distribute their allotment to the managers
that report to them. The managers can use their resources to hire employees, reward employees for
good performance, or buy data and hypotheses from freelance agents or from other managers. The
managers may combine the data and hypotheses themselves or assign their employees the task of doing
the combination. Managers can also serve on committees to negotiate for resources or to produce
committee reports to be sent up the hierarchy. Managers at each level of the hierarchy receive rewards

from higher levels, they reward their employees for what they produce, they can hire new employees or
fire unproductive employees, and they can buy or sell data and services by sideways transfers to other
managers.

An MDL society learns by reorganizing itself to produce improved results, which humans or other
agents are willing to buy. The reward system addresses the basic problems faced by Pandemonium:
increasing resources for the most productive agents; reducing resources for the less productive agents;
and reorganizing the hierarchy by growing the more productive branches and shrinking the less
productive branches. The rewards pass through the management hierarchy to create an effect similar to
the backward propagation learning of a neural network. But unlike the simple switches and numeric
functions of a neural network, MDL agents can be arbitrarily complex programs or reasoning systems,
they can hire or fire other agents, and the messages can be propositions or even large documents stated
in some version of logic. If the messages are stated in a dialect of Common Logic, they could be
translated to CLCE in order to provide humanly readable explanations or an “audit trail” about the way
the FMF system derived its data, hypotheses, and reports. These options are not possible with the
numeric weighting schemes of most neural networks. (Note, however, that individual agents in an FMF
system could use any computing mechanism internally, including neural networks. But such agents
would communicate with other FMF agents by the usual FMF message formats.)

4. Interpreting Natural Languages
A system that interprets natural language must take into account all the aspects of language covered by
the eight boxes in Figure 1. As that diagram suggests, every aspect is related, directly or indirectly, to
every other aspect. Psycholinguistic studies indicate that people process all those aspects concurrently,
and brain scans indicate that different aspects seem to be processed in different parts of the brain. None
of the psychological or neurological studies, however, are sufficiently detailed to show the internal data
formats or the kinds of operations performed on that data. As a working hypothesis, many linguists and
computational linguists have assumed that the underlying conceptual structures can be conveniently
represented by labeled graphs, possibly with nested graphs within graphs. That assumption is very
general, since it includes most of the alternatives as special cases: strings, trees, feature structures, and
various notations for logic. Conceptual graphs are a semantic representation influenced by the research
in linguistics, logic, psycholinguistics, and computational linguistics (Sowa 1984, 2008). They can
represent ISO standard Common Logic as a proper subset, but they can also be processed by scruffy
heuristics.

For the VivoMind implementations, conceptual graphs are generated in the semantics division in the
center of Figure 2, and they are further elaborated in the pragmatics and model-building divisions at the
right. For any input text, the morphology and syntax divisions at the left usually begin the processing,
but the VP agents that manage the other divisions run concurrently. Therefore, they can begin to make
partial contributions to the analysis before the morphology and syntax agents have finished the
sentence. As an example, the following sentence appeared in a text about oil and gas exploration:

The Diana field is situated in the western Gulf of Mexico
260 km (160 mi) south of Galveston
in approximately 1430 m (4700 ft) of water.

If the sentence had ended with the word Mexico, the syntax would be unambiguous. But the measures
in the next two lines, the parenthetical expressions, and the points for attaching prepositional phrases
create ambiguities. Is Diana field or the Gulf of Mexico south of Galveston? What is in the water?
Diana field, the Gulf of Mexico, or Galveston? After a devastating hurricane, Galveston was under
water, but background knowledge should imply that cities are usually not under water.

Agents that process lexical information, context, heuristics, and domain knowledge contribute to the
interpretation. A morphology agent expands “ft” to “feet”. An ontology for the geoscience domain
indicates that Diana field is a reservoir, which consists of rocks that trap hydrocarbons; such a reservoir
is underground; and the ground may be under water. Parenthesized expressions are usually
idiosyncratic and ad hoc. One agent detected measures that were approximately equal, but stated in
different units. Therefore, it made the hypothesis that the parenthesized expressions were intended to
express equality. During the parsing process, the agents can create multiple links as tentative
hypotheses. A manager in charge of those agents evaluates the evidence for each alternative and prunes
away the unlikely options. The remaining links indicate that Diana field is south of Galveston and in
the water.

Many different syntactic parsers have been used to generate conceptual graphs. But theories that focus
on the connections between words, such as dependency grammars and link grammars, are convenient
because their links map directly to the nodes and arcs of CGs. Several different parsers have been
implemented at VivoMind, and the ones based on link grammar (Sleator & Temperley 1993) have been
the easiest to combine with graph operations for semantics. The latest VivoMind parser is based on
link grammar, but influenced by a distributed concurrent parser called ParseTalk (Hahn et al. 1994,
2000). Instead of the static global control of conventional parsers, ParseTalk has a “dynamic, local-
control model” that supports “a balanced treatment of both declarative and procedural constructs
within a single formal framework.” The ParseTalk control structure is based on actors implemented in
an object-oriented language (Smalltalk). Bröker (1999) added semantic actors to the original syntactic
actors of ParseTalk. The actors enable it to process multiple syntactic constraints and knowledge
sources concurrently. Zeman and Žabokrtský (2005) combined the results of multiple dependency
parsers by a committee that used voting and learning. The committee choices were significantly more
accurate than the results of the best parser by itself.

The ParseTalk actors and the FMF agents have similar advantages, but the object-oriented actors are
more tightly coupled than the heterogeneous FMF agents. As the developers said, ParseTalk has “a
single formal framework.” For the FMF agents, the only thing that is common to all of them is the
message format with six fields. Different agents can use different languages, different paradigms, and
even different hardware located on different continents. The loose coupling of the FMF agents makes
it easy to add new agents with new capability without disrupting any of the older functions; it also
enables the system to continue if some agent or agents fail. In some applications, one or more FMF
agents failed, but the system continued to run without their input. Eventually, the manager of the
agents restarted them.

5. Reasoning with Multiple Paradigms
Deduction is the most common method of reasoning used with logic-based systems. But deduction is
precise, predictable, and brittle. If everything is perfect, deduction is perfect. Such perfection is only
achievable in pure mathematics. For normal, imperfect computer applications, deduction can magnify
and propagate any imperfection to the point of a total collapse. When people reason, they seldom carry
out long chains of deductions, and they often perform a “sanity check” to avoid obvious errors. If a
conclusion seems odd, a prudent individual would ask for advice or try an alternative method of
reasoning. People don’t expect every message to be completely understood. They ask questions, give
explanations, negotiate, and compromise. In short, they use multiple paradigms to cross-check their
results and avoid the biases that tend to occur with just a single paradigm. Bundy and McNeill (2006)
maintain that intelligent systems must have a similar ability to revise, repair, and refine their axioms to
accommodate the inevitable exceptions, discrepancies, and aberrations.

Frege and Peirce were pioneers in logic, who independently discovered equivalent representations for
full first-order logic. But they had different goals for logic. Frege applied his logic to mathematics,
for which deduction is the primary method of reasoning. But Peirce used logic in a much broader
range of applications, including scientific discovery, philosophical analysis, and the definition of words
in linguistics and lexicography. In addition to deduction, Peirce emphasized the use of induction in
generalizing from examples and abduction in forming hypotheses or educated guesses. Unlike many
logicians who viewed metaphors and analogies with suspicion, Peirce (1902) included analogy as one
of the four methods of reasoning: “Besides these three types of reasoning there is a fourth, analogy,
which combines the characters of the three, yet cannot be adequately represented as composite.”
Figure 3 is a diagram of Peirce’s cycle of reasoning, inspired by his lectures on pragmatism (1903).

Figure 3. Peirce’s cycle of pragmatism

Note that deduction is a small part of the cycle. By itself, deduction can only derive the consequences
of already familiar assumptions. Induction forms generalizations from specific instances, abduction
supports guessing or hypothesis formation, revision accommodates exceptions, and testing keeps
reasoning grounded in reality. Analogy combines aspects of the other methods of reasoning, and it
can be used by itself as the primary method for informal reasoning. The brain in Figure 3, labeled
cognitive memory, represents an open-ended associative store of all the knowledge and data acquired
by a system, natural or artificial. In capital letters, Cognitive Memory™ is a high-performance
associative memory developed by VivoMind.

A critical component of any intelligent reasoner is a high-speed associative memory for finding
relevant chunks, K-lines, schemata, or other patterns of knowledge. For conceptual graphs, that would

require a high-speed method for indexing and finding relevant graphs and subgraphs. Some of the most
advanced research on processing graphs has been done by chemists, who need to classify and search
for millions of graphs of organic molecules. An application of chemical algorithms to conceptual
graphs led to the first high-speed method for classifying and finding conceptual graphs (Levinson &
Ellis 1992); one implementation of that method was used in the web site of a large online retailer
(Sarraf & Ellis 2006). More recent work on chemical graphs has produced algorithms for encoding
both the graph structure and the labels in numeric vectors, indexing the encodings, and finding all
graphs within a small semantic distance of a given query graph (Rhodes et al. 2007); those algorithms
are being used to index and search a database of over four million chemical graphs. Those techniques
resemble the methods for indexing conceptual graphs and finding analogous graphs in logarithmic time
(Sowa & Majumdar 2003):

1. Convert each graph to a unique linear representation. For a chemical graph, the conversion is
based on its International Chemical Identifier (InChI). Similar conversions can be applied to
labeled graphs of any kind.

2. Map the linear form to numeric vectors that encode both the graph structure and the ontology
(labels) on the nodes and arcs.

3. Use a measure of semantic distance between the vectors. For conceptual graphs, that measure
takes into account both the structure (ordering, connectivity, and cycles) and the ontology (type
labels and hierarchy). For chemical graphs, similar structural properties are used, but the
ontology is based on the properties of atoms and chemical bonds.

4. Use the semantic distance measure to index the graphs and find graphs within a given distance
(threshold).

For conceptual graphs, the time to build the index is proportional to (N log N), where N is the number
of graphs. The time to find graphs that are similar to a given query graph is proportional to (log N).
If more than one graph is found within a given threshold, structure-mapping algorithms can be used
(Falkenhainer et al. 1989), but it’s often faster to distinguish graphs by applying semantic operations
directly to the encodings.

The Flexible Modular Framework with multiple heterogeneous agents has proved to be a flexible,
robust, and efficient system for learning, reasoning, and language processing. The six-field message
format together with associative blackboards supports the computational power of the π-calculus. The
Cognitive Memory system provides a high-speed resource for analogy finding, case-based reasoning,
and associative access to knowledge and information of any kind — including facts and axioms stated
in Common Logic and transmitted in CGIF. The Market Driven Learning methods with the rewards of
resources for good performance extend the π-calculus to a version of the $-calculus or cost-calculus by
Eberbach et al. (2004). A cost measure based on space and time requirements can constrain the
excesses of systems like Pandemonium and direct agents toward promising goals. Turing (1939)
showed that a Turing machine that could ask for information from a external oracle was more powerful
than a Turing machine in isolation. Eberbach et al. claimed that messages from external agents or the
environment could serve as the equivalent of an oracle to go beyond the limitations of a Turing
machine. Whatever the theoretical power, the FMF with these additions has served as a practical tool
for rapidly building intelligent systems.

References
Baum, Eric B. (2004) What is Thought? MIT Press, Cambridge, MA.

Bröker, Norbert (1999) Eine Dependenzgrammatik zur Kopplung heterogener Wissensquellen, Max
Niemeyer Verlag, Tübingen.

Brooks, Rodney A. (1991) Intelligence without representation, Artificial Intelligence 47, 139-159.

Bundy, Alan, & Fiona McNeill (2006) Representation as a fluent: An AI challenge for the next half
century, IEEE Intelligent Systems 21:3, pp. 85-87.

Eberbach, Eugene, Dina Goldin, & Peter Wegner (2004) Turing’s ideas and models of computation, in
C. Teuscher, ed., Alan Turing: Life and Legacy of a Great Thinker, Springer, Berlin.

Falkenhainer, B., Kenneth D. Forbus, Dedre Gentner (1989) The structure mapping engine: algorithm
and examples, Artificial Intelligence 41, 1-63.

Gelernter, David (1985) Generative communication in Linda, ACM Transactions on Programming
Languages and Systems, pp. 80-112.

Hahn, Udo, Susanne Schacht, & Norbert Bröker (1994) Concurrent natural language parsing: The
ParseTalk model, International Journal of Human-Computer Studies 41, 179-222.

Hahn, Udo, Norbert Bröker, & Peter Neuhaus (2000) Let’s ParseTalk: Message-passing protocols for
object-oriented parsing, in H. Bunt & A. Nijholt, eds., Recent Advances in Parsing Technology, Kluwer,
Dordrecht.

ISO/IEC (2007) Common Logic (CL) — A Framework for a family of Logic-Based Languages, IS
24707, International Organisation for Standardisation.

Lenat, Douglas B. (1995) Cyc: A large-scale investment in knowledge infrastructure, Communications
of the ACM 38:11, 33-38.

Levinson, Robert A., & Gerard Ellis (1992) Multilevel hierarchical retrieval, Knowledge Based
Systems 5:3, 233-244.

Majumdar, Arun K., John F. Sowa, & John Stewart (2008) Pursuing the goal of language
understanding, in P. Eklund & O. Haemmerlé, eds, Proceedings of the 16th ICCS, LNAI 5113,
Springer, Berlin, 2008, pp. 21-42.

Majumdar, Arun, Mary Keeler, Paul Tarau, & John Sowa (2007) Semantic distances as knowledge
capture constraints, First Workshop on Knowledge Capture and Constraint Programming (KCCP-
2007), Whistler, BC.

McCarthy, John (1989) Elephant 2000: A programming language based on speech acts, http://www-
formal.stanford.edu/jmc/elephant.html

Milner, Robin (1999) Communicating and Mobile Systems: The π calculus, Cambridge University
Press, Cambridge.

Minsky, Marvin (1980) K-lines: A Theory of Memory, Cognitive Science 4, 117-133.

Minsky, Marvin (1986) The Society of Mind, Simon and Schuster, New York.

Minsky, Marvin (1991) Logical vs. analogical or symbolic vs. connectionist or neat vs. scruffy, AI
Magazine, 12:2, 34-51.

Minsky, Marvin (1993) Review of Allen Newell’s Unified Theories of Cognition, in Artificial
Intelligence, 59, 343-354.

Minsky, Marvin (2006) The Emotion Machine: Commonsense Thinking, Artificial Intelligence, and the
Future of the Human Mind, Simon & Schuster, New York.

Monderer, Dov, Moshe Tennenholtz, & Hal Varian (2001) Economics and artificial intelligence, Games
and Economic Behavior 35:1-2, 1-5.

Newell, Allen (1990) Unified Theories of Cognition, Harvard University Press, Cambridge, MA.

Peirce, Charles S. (1902) Logic, Considered as Semeiotic, MS L75, edited by Joseph Ransdell,
http://www.cspeirce.com/menu/library/bycsp/l75/l75.htm

Peirce, Charles S. (1903) Harvard lectures on pragmatism, in N. Houser & C. Kloesel, eds., Essential
Peirce, vol. 2, Indiana University Press, Bloomington, pp. 133-241.

Rhodes, James, Stephen Boyer, Jeffrey Kreulen, Ying Chen, & Patricia Ordonez (2007) Mining patents
using molecular similarity search, Pacific Symposium on Biocomputing 12, 304-315.

Sarraf, Qusai, & Gerard Ellis (2006) Business rules in retail: The Tesco.com story, Business Rules
Journal 7:6, http://www.brcommunity.com/a2006/n014.html

Selfridge, Oliver G. (1959) Pandemonium: A paradigm for learning, in The Mechanization of Thought
Processes, NPL Symposium No. 10, Her Majesty’s Stationery Office, London, 511-526.

Singh, Push (2003) Examining the society of mind, Computing and Artificial Intelligence 22:6.

Sleator, Daniel, & Davy Temperley (1993) Parsing English with a link grammar, Third International
Workshop on Parsing Technologies,
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/link/pub/www/papers/ps/LG-IWPT93.pdf

Sowa, John F. (1984) Conceptual Structures: Information Processing in Mind and Machine, Addison-
Wesley, Reading, MA.

Sowa, John F. (2002) Architectures for intelligent systems, IBM Systems Journal 41:3, 331-349.
http://researchweb.watson.ibm.com/journal/sj41-3.html

Sowa, John F. (2004) Graphics and languages for the Flexible Modular Framework, in K. E. Wolff, H.
D. Pfeiffer, & H. S. Delugach (2004) Conceptual Structures at Work, Proceedings of ICCS 2004, LNAI
3127, Springer, Berlin, pp. 31-51.

Sowa, John F. (2008) Conceptual graphs, in van Harmelen et al. (2008) pp. 213-237.

Sowa, John F., & Arun K. Majumdar (2003) Analogical reasoning, in A. de Moor, W. Lex, & B. Ganter,
eds. (2003) Conceptual Structures for Knowledge Creation and Communication, LNAI 2746, Springer,
Berlin, pp. 16-36.

Turing, Alan M. (1939) Systems of logic based on ordinals, Proc. London Mathematical Society, Series
2, Vol. 45, pp. 161-228.

van der Hoek, Wiebe, & Michael Wooldridge (2008) Multiagent systems, in van Harmelen et al. (2008)
pp. 887-928.

van Harmelen, Frank, Vladimir Lifschitz, & Bruce Porter, eds. (2008) Handbook of Knowledge
Representation, Elsevier, Amsterdam.

Zeman, Daniel, & Zdenek Žabokrtský (2005) Improving parsing accuracy by combining diverse
dependency parsers, Proc. IWPT-05, ACL, pp. 171-178.

	Two Paradigms Are Better Than One,
And Multiple Paradigms Are Even Better
	Arun K. Majumdar and John F. Sowa

	1. Architectures for Intelligent Systems
	2. The Society of Mind
	3. A Hierarchy of Managers and Employees
	4. Interpreting Natural Languages
	5. Reasoning with Multiple Paradigms
	References

