
Pursuing the Goal of Language Understanding
Arun Majumdar, John Sowa, John Stewart

VivoMind Intelligence, Inc.
Abstract. No human being can understand every text or dialog in his or her native language, and no
one should expect a computer to do so. However, people have a remarkable ability to learn and to
extend their understanding without explicit training. Fundamental to human understanding is the
ability to learn and use language in social interactions that Wittgenstein called language games.
Those language games use and extend prelinguistic knowledge learned through perception, action,
and social interactions. This article surveys the technology developed for natural language processing
and the successes and failures of various attempts. Although many useful applications have been
implemented, the original goal of language understanding seems as remote as ever. Fundamental to
understanding is the ability to recognize an utterance as a move in a social game and to respond in
terms of a mental model of the game, the players, and the environment. Those models use and extend
the prelinguistic models learned through perception, action, and social interactions. Secondary uses of
language, such as reading a book, are derivative processes that elaborate and extend the mental models
originally acquired by interacting with people and the environment. A computer system that relates
language to virtual models might mimic some aspects of understanding, but full understanding requires
the ability to learn and use new knowledge in social and sensory-motor interactions. These issues are
illustrated with an analysis of some NLP systems and a recommended strategy for the future. None of
the systems available today can understand language at the level of a child, but with a shift in strategy
there is hope of designing more robust and usable systems in the future.

This is a slightly revised and extended version of a paper in the Proceedings of the 16th ICCS, edited
by P. Eklund and O. Haemmerlé, LNAI 5113, Springer, Berlin, 2008, pp. 21-42.

1. The Goal of Language Understanding
Some early successes of artificial intelligence led to exaggerated expectations. One example was
the theorem prover by Hao Wang (1960), which proved the first 378 theorems of the Principia
Mathematica in 7 minutes — an average of 1.1 seconds per theorem on the IBM 704, a vacuum-tube
machine with 144K bytes of storage. Since that speed was much faster than the two brilliant logicians
who wrote the book, pioneers in AI thought that simulating human intelligence would be easy. For
machine translation, Delavenay (1960) claimed “While a great deal remains to be done, it can be stated
without hesitation that the essential has already been accomplished.” Good (1965) predicted “It is
more probable than not that, within the twentieth century, an ultraintelligent machine will be built and
that it will be the last invention that man need make.” The movie 2001, which appeared in 1968,
featured the HAL 9000, an intelligent computer that could carry on a conversation in flawless English
and even read lips when the humans were trying to communicate in secret. Marvin Minsky, a technical
advisor on that movie, claimed it was a “conservative” estimate of AI technology at the end of the 20th
century. Yet mathematical tasks, such as proving theorems or playing chess, turned out to be far easier
to process by computer than simulating the language skills of a three-year-old child.

In chess or mathematics, a computer can exceed human abilities without simulating human thought.
But language is so intimately tied to thought that a computer probably cannot understand language
without simulating human thinking at some level. That point raises many serious questions: At what

level? With what theory of thinking? With what kinds of internal mechanisms? And with what
theories and mechanisms for relating the internal processes via the sensory-motor systems to other
agents and the world? Several kinds of theories have been proposed, analyzed, and discussed since
antiquity: thoughts are images, thoughts are feelings, thoughts are propositions, and thoughts are
multimodal combinations of images, feelings, and propositions.

The propositional theory has been the most popular in AI, partly because it’s compatible with a large
body of work in logic and partly because it’s the easiest to implement on a digital computer. Figure 1
illustrates the classical paradigm for natural language processing. At the top is a lexicon that maps the
vocabulary to speech sounds, word forms, grammar, and word senses. The arrows from left to right link
each stage of processing: phonology maps the speech sounds to phonemes; morphology relates the
phonemes to meaningful units or morphemes; syntax analyzes a string of morphemes according to
grammar rules; and semantics interprets the grammatical patterns to generate propositions stated in
some version of logic.

Figure 1. Classical stages in natural language processing

Psycholinguistic evidence since the 1960s has shown that Figure 1 is unrealistic. All the one-way
arrows should be double headed, because feedback from later stages has a major influence on
processing at earlier stages. Even the arrows from the lexicon should be double headed, because
people are constantly learning and coining new words, new word senses, and new variations in syntax
and pronunciation. The output labeled logic is also unrealistic, because logicians have not reached a
consensus on an ideal logical form and many linguists doubt that logic is an ideal representation for
semantics. Furthermore, Figure 1 omits everything about how language is used by people who interact
with each other and the world. Figure 2 is a more realistic diagram of the interconnections among the
modules.

Figure 2. A more realistic diagram of interconnections

Yet Figure 2 also embodies questionable assumptions. The box labeled perception, action, and emotion,
for example, blurs all the levels of cognition from fish to chimpanzees. Furthermore, the boxes of

Figure 2 correspond to traditional academic fields, but there is no evidence that those fields have a
one-to-one mapping to modules for processing language in the brain. In particular, the box labeled
knowledge should be subdivided in at least three ways: language-independent knowledge stored in
image-like form; conceptual knowledge related to language, but independent of any specific language;
and knowledge of the phonology, vocabulary, and syntax of specific languages. The box labeled
pragmatics deals with the use of language in human activities. Wittgenstein (1953) proposed a
reorganization in language games, according to the open-ended variety of ways language is used in
social interactions. That subdivision would cause a similar partitioning of the other boxes, especially
semantics, knowledge, and the lexicon. It would also affect the variations of syntax and phonology in
casual speech, professional jargon, or “baby talk” with an infant.

In his first book, Wittgenstein (1921) presented a theory of language and logic based on principles
proposed by his mentors, Frege and Russell. Believing he had solved all the problems of philosophy,
Wittgenstein retired to an Austrian mountain village, where he taught elementary schoolchildren.
Unfortunately, the children did not learn, think, or speak according to those principles. In his second
book, Wittgenstein (1953) systematically analyzed the “grave errors” (schwere Irrtümer) in the
framework he had adopted. One of the worst was the view that logic is superior to natural languages
and should replace them for scientific purposes. Frege (1879), for example, hoped “to break the
domination of the word over the human spirit by laying bare the misconceptions that through the use
of language often almost unavoidably arise concerning the relations between concepts.” Russell
shared Frege’s low opinion of natural language, and both of them inspired Carnap, the Vienna Circle,
and most of analytic philosophy.

Many linguists and logicians who work within the paradigm of Figure 1 admit that it’s oversimplified,
but they claim that simplification is necessary to enable researchers to address solvable subproblems.
Yet Richard Montague and his followers have spent forty years working in that paradigm, and
computational linguists have been working on it for half a century. But the goal of designing a system
at the level of HAL 9000 seems more remote today than in 1968. Even pioneers in the logic-based
approach have begun to doubt its adequacy. Kamp (2001), for example, claimed “that the basic
concepts of linguistics — and especially those of semantics — have to be thought through anew” and
“that many more distinctions have to be drawn than are dreamt of in current semantic theory.”

This article emphasizes the distinctions that were dreamt of and developed by cognitive scientists who
corrected or rejected the assumptions by Frege, Russell, and their followers. Section 2 begins with
the semeiotic by Charles Sanders Peirce, who had invented the algebraic notation for logic, but who
placed it in a broader framework than the 20th-century logicians who used it. Section 3 discusses the
ubiquitous pattern matching in every aspect of cognition and its use in logical and analogical reasoning.
Section 4 presents Wittgenstein’s language games and the social interactions in which language is
learned, used, and understood. Section 5 introduces Minsky’s Society of Mind as a method of
supporting the interactions illustrated in Figure 2. Section 6 summarizes the lessons learned from
work with two earlier language processors. The concluding Section 7 outlines a multilevel approach
to language processing that can support more robust and flexible systems.

2. Semeiotic and Biosemiotics
Peirce claimed that the primary characteristic of life is the ability to recognize, interpret, and respond to
signs. Signs are even more fundamental than neurons because every neuron is itself a semiotic system:
it receives signs and interprets them by generating more signs, which it passes to other neurons or
muscle cells. Every cell, even an independent bacterium, is a semiotic system that recognizes chemical,
electrical, or tactile signs and interprets them by generating other signs. Those signs can cause the

walls of a bacterial cell to contract or expand and move the cell toward nutrients and away from toxins.
The brain is a large colony of neural cells, whose signs coordinate a symbiotic relationship within an
organism of many kinds of cells. The neural system supports rapid, long-distance communication by
electrical signs, but all cells can communicate locally by chemical signs. By secreting chemicals into
the blood stream, cells can broadcast signs by a slower, but more pervasive method. At every level
from a single cell to a multicellular organism to a society of organisms, signs support and direct all vital
processes. Semeiotic is Peirce’s term for the theory of signs. The modern term biosemiotics emphasizes
Peirce’s point that sign processing is more general than human language and cognition.

Figure 3. An evolutionary view of the language modules

Deacon (1997), a professional neuroscientist, used Peirce’s theories as a guide for relating neurons to
language. Figure 3 illustrates his view that the language modules of the brain are a recent addition and
extension of a much older ape-like architecture. Deacon used Peirce’s categories of icon, index, and
symbol to analyze the signs that animals recognize or produce. The calls a hunter utters to control the
dogs are indexes, the vocal equivalent of a pointing finger. Vervet monkeys have three types of warning
calls: one for eagles, another for snakes, and a third for leopards. Some people suggested that those
calls are symbols of different types of animals, but vervets never use them in the absence of the
stimulus. More likely, the vervet that sees the stimulus uses the call as an index to tell other vervets to
look up, look down, or look around. An early step from index to symbol probably occurred when
some hominin proposed a hunt by uttering an index for prey, even before the prey was present. After
symbols became common, they would enable planning and organized activities in every aspect of life.
The result would be a rapid increase in vocabulary, which would promote the co-evolution of language,
brain, vocal tract, and culture.

Like Frege, Peirce was a logician who independently developed a complete notation for first-order
logic. Unlike Frege, Peirce had a high regard for the power and flexibility of language, and he had
worked as an associate editor of the Century Dictionary, for which he wrote, revised, or reviewed over
16,000 definitions. Peirce never rejected language or logic, but he situated both within the broader
theory of signs. In his semeiotic, every sign is a triad that relates a perceptible mark (1), to another sign
called its interpretant (2), which determines an existing or intended object (3). Following is one of
Peirce’s most often quoted definitions:

A sign, or representamen, is something which stands to somebody for something in some
respect or capacity. It addresses somebody, that is, creates in the mind of that person an

equivalent sign, or perhaps a more developed sign. That sign which it creates I call the
interpretant of the first sign. The sign stands for something, its object. It stands for that
object, not in all respects, but in reference to a sort of idea, which I have sometimes called
the ground of the representamen. (CP 2.228)

A pattern of green and yellow in the lawn, for example, is a mark, and the interpretant is some type,
such as Plant, Weed, Flower, SaladGreen, or Dandelion. The guiding idea that determines the
interpretant depends on the context and the intentions of the observer. The interpretant determines
the word the observer chooses to express the experience. The listener who hears that word uses
background knowledge to derive an equivalent interpretant.

As Peirce noted, an expert with a richer background can sometimes derive a more developed interpre-
tant than the original observer. Mohanty (1982:58) remarked “Not unlike Frege, Husserl would rather
eliminate such fluctuations from scientific discourse, but both are forced to recognize their recalcitrant
character for their theories and indispensability for natural languages.” Communication in which both
sides have identical interpretants is possible with computer systems. Formal languages are precise, but
they are rigid and fragile. The slightest error can and frequently does cause a total breakdown, such as
the notorious “blue screen of death.”

On the surface, Peirce’s triads seem similar to the meaning triangles by Aristotle, Frege, or Ogden and
Richards (1923). The crucial difference is that Peirce analyzed the underlying relationships among the
vertices and sides of the triangle. By analyzing the relation between the mark and its object, Peirce
(1867) derived the triad of icon, index and symbol: an icon refers by some similarity to the object; an
index refers by a physical effect or connection; and a symbol refers by a law, habit, or convention.
Figure 4 shows this relational triad in the middle row.

Figure 4. Peirce’s triple trichotomy

Later, Peirce added the first row or material triad, which signifies by the nature of the mark itself. The
third row or formal triad signifies by a formal rule that relates all three vertices — the mark,
interpretant, and object. The basic units of language are characterized by the formal triad: a word
serves as a rheme; a sentence, as a dicent sign; and a paragraph or other sequence, as an argument. The
labels at the top of Figure 4 indicate how the sign directs attention to the object: by some quality of the
mark, by some causal or pointing effect, or by some mediating law, habit, or convention. The following

examples illustrate nine types of signs:

1. Qualisign (material quality). A ringing sound as an uninterpreted sensation.

2. Sinsign (material indexicality). A ringing sound that is recognized as coming from a telephone.

3. Legisign (material mediation). The convention that a ringing telephone means someone is
trying to call.

4. Icon (relational quality). An image that resembles a telephone when used to indicate a
telephone.

5. Index (relational indexicality). A finger pointing toward a telephone.

6. Symbol (relational mediation). A ringing sound on the radio that is used to suggest a telephone
call.

7. Rheme (formal quality). A word, such as telephone, which can represent any telephone, real or
imagined.

8. Dicent Sign (formal indexicality). A sentence that asserts an actual existence of some object or
event: “You have a phone call from your mother.”

9. Argument (formal mediation). A sequence of dicent signs that expresses a lawlike connection:
“It may be an emergency. Therefore, you should answer the phone.”

The nine categories in Figure 4 are more finely differentiated than most definitions of signs, and they
cover a broader range of phenomena. Anything that exists can be a sign of itself (sinsign), if it is
interpreted by an observer. But Peirce (1911:33) did not limit his definition to human minds or even to
signs that exist in our universe:

A sign, then, is anything whatsoever — whether an Actual or a May-be or a Would-be —
which affects a mind, its Interpreter, and draws that interpreter’s attention to some Object
(whether Actual, May-be, or Would-be) which has already come within the sphere of his
experience.

The mind or quasi-mind that interprets a sign need not be human. In various examples, Peirce
mentioned dogs, parrots, and bees. Higher animals typically recognize icons and indexes, and some
might recognize symbols. A language of some kind is a prerequisite for signs at the formal level of
rhemes, dicent signs, and arguments.

As these examples show, Peirce’s theory of signs provides a more nuanced basis for analysis than the
all-or-nothing question of whether animals have language. Unlike the static meaning triangles of
Aristotle or Frege, the most important aspect of Peirce’s triangles is their dynamic nature: any vertex
can spawn another triad to show three different perspectives on the entity represented by that vertex.
During the course of a conversation, the motives of the participants lead the thread of themes and topics
from triangle to triangle.

3. Perception, Cognition, and Reasoning
Language affects and is affected by every aspect of cognition. Only one topic is more pervasive than
language: signs in general. Every cell of every organism is a semiotic system, which receives signs
from the environment, including other cells, and interprets them by generating more signs, both to
control its own inner workings and to communicate with other cells of the same organism or different
organisms. The brain is a large colony of neural cells, which receives, generates, and transmits signs to
other cells of the organism, which is an even larger colony. Every publication in neuroscience describes

brains and neurons as systems that receive signs, process signs, and generate signs. Every attempt to
understand those signs relates them to other signs from the environment, to signs generated by the
organism, and to theories of those signs in other branches of cognitive science. The meaning of the
neural signs can only be determined by situating neuroscience within a more complete theory that
encompasses every aspect of cognitive science.

By Peirce’s definition of sign, all life processes, especially cognition, involve receiving, interpreting,
generating, storing, and transmitting signs and patterns of signs. Experimental evidence is necessary to
determine the nature of the signs and the kinds of patterns generated by the interpretation. Perceptual
signs are icons derived from sensory stimulation caused by the outside world or caused by internal
bodily processes. Recognition consists of interpreting a newly received icon by matching it to
previously classified icons called percepts and patterns of percepts called Gestalts. The interpretation
of an icon is the pattern formed by the percepts, Gestalts, and other associated signs. The interpreting
signs may be image-like percepts or imageless concepts, which are similar to percepts, but without the
sensory connections.

Analogy is a method of reasoning based on pattern matching, and every method of logic is a
constrained use of analogy. As an example, consider the rule of deduction called modus ponens:
 Premise: If P then Q.
 Assertion: P′.
 Conclusion: Q′.

This rule depends on the most basic form of pattern matching: a comparison of P and P′ to determine
whether they are identical. If P in the premise is not identical to P′ in the assertion, then a pattern-
matching process called unification specializes P by some transformation S that makes S(P) identical
to P′. By applying the same specialization S to Q, the conclusion Q′ is derived as S(Q). Each of the
following three methods of logic constrain the pattern matching to specialization, generalization, or
identity.

1. Deduction. Specialize a general principle.
 Known: Every bird flies.
 Given: Tweety is a bird.
 Infer: Tweety flies.

2. Induction. Generalize multiple special cases:
 Given: Tweety is a bird. Polly is a bird. Hooty is a bird.
 Tweety flies. Polly flies. Hooty flies.
 Assume: Every bird flies.

3. Abduction. Given a special case and a known generalization, make a guess that explains the
special case.
 Given: Tweety flies.
 Known: Every bird flies.
 Guess: Tweety is a bird.

These three methods of logic depend on the ability to use symbols. In deduction, the general term every
bird is replaced by the name of a specific bird Tweety. Induction generalizes a property of multiple
individuals — Tweety, Polly, and Hooty — to the category Bird, which subsumes all the instances.
Abduction guesses the new proposition Tweety is a bird to explain one or more observations. According
to Deacon’s hypothesis that symbols are uniquely human, these three reasoning methods could not be
used by nonhuman mammals.

According to Peirce (1902), “Besides these three types of reasoning there is a fourth, analogy, which
combines the characters of the three, yet cannot be adequately represented as composite.” Its only
prerequisite is stimulus generalization — the ability to classify similar patterns of stimuli as signs of
similar objects or events. Unlike the more constrained operations of generalization and specialization,
similarity may involve a generalization of one part and a specialization of another part of the same
pattern. Analogy is more primitive than logic because it does not require language or symbols. In
Peirce’s terms, logic requires symbols, but analogy can also be performed on image-like icons. Case-
based reasoning (CBR) is an informal method of reasoning, which uses analogy to find and compare
cases that may be relevant to a given problem or question.

Whether the medium consists of discrete words or continuous images, CBR methods start with a
question or goal Q about some current problem or situation P. By analogy, cases that resemble P are
recalled from long-term memory and ranked according to their similarity to P. The case with the
greatest similarity (i.e., smallest semantic distance) is the most likely to answer the question Q. When
a similar case is found, the part of the case that matches Q is the predicted answer. If two or more
cases are similar to P, they might not predict the same answer. If they do, that answer can be accepted
with a high degree of confidence. If not, multiple cases can be combined by some transformation: a
disjunction (Q1 or Q2), a generalization of Q1 and Q2, or a blend of features from both. A semantic
distance measure could be used to choose the most appropriate transformation by comparing the results
with typical examples in the knowledge base.

Both logic and CBR have a large overlap on which they’re compatible: they would generate consistent
responses to the same questions. For highly regular data, induction can generalize many cases to rules
of the form If P, then Q. For such data, CBR would derive the same conclusions as a method of
deduction called backward chaining: a goal Q′ is unified to the conclusion Q of some if-then rule by
means of a specialization S; the application of S to P produces the pattern P′, which is a generalization
of one or more cases. Formal deduction is best suited to thoroughly analyzed areas of science, for
which induction can reduce a large number of cases to a small number of rules. CBR is most valuable
for subjects with highly varied or frequently changing cases, for which any axioms would have a long
list of exceptions. In legal reasoning, for example, the list of laws and the list of cases are enormous,
and nearly every generalization has as many exceptions as applications.

For both formal and informal reasoning, a high-speed method of indexing and finding relevant data
is essential, but discrete list-processing methods have been too slow. The world is continuous, all
physical motions are continuous, feelings and sensations vary continuously, but every natural language
has a discrete, finite set of meaningful units or morphemes. No discrete set of symbols can faithfully
represent a continuous world, but a cognitive system must map discrete words to and from continuous
sensations. Wildgen (1982, 1994) maintained that continuous fields are the primary basis for
perception and cognition, and he adopted René Thom’s catastrophe-theoretic semantics for identifying
the patterns that map to the discrete words and phrases. That approach is still controversial, but the
principle of mapping discrete structures such as conceptual graphs (CGs) to continuous fields has
proved to be valuable for developing efficient methods for indexing CGs and computing the semantic
distance between them (Sowa & Majumdar 2003). Those methods were used for finding analogies by
the VivoMind Analogy Engine (VAE), and more precise and flexible mappings have been implemented
in a new system called Cognitive Memory™. This system is based on active agents, as discussed in
Section 5, and it encodes arbitrarily large conceptual graphs in Cognitive Signatures™, which are
mathematical structures embedded in a continuous field. Psychologically, those signatures represent
chunks of knowledge that can be related to other chunks by high-speed numeric computations.

4. Language Games
The first language game may have evolved about four million years ago as a system of grunts and
gestures for organizing a hunt. At that time, chimpanzees lived in the forests of west Africa, while
our ancestor, Australopithecus, lived in the grasslands to the east. With fewer trees to climb, the
Australopithecines began to walk upright. Chimps supplement their diet by catching and eating small
game, but in lands with sparser vegetation, Australopithecines required more meat. Since they weren’t
as fast as their prey, they had to hunt in organized parties, which require communication. The calls and
gestures of the chimps were adequate for occasional hunting, but when hunting became a necessity, any
improvement in communication would be an enormous advantage. Vocal calls are convenient because
they leave the hands free, and they can be spoken and heard while eyes are focused on the prey. The
earliest protowords were probably a few dozen indexical signs, of the sort that modern hunters and
shepherds use to control their dogs. The first step from index to symbol likely occurred when some
hominin proposed a hunt by uttering the index for prey, even before the prey was present. After
symbols were invented, language games could be integrated with every social activity that involved
cooperation, negotiation, persuasion, planning, or play.

Wittgenstein’s theory of language games has major implications for both semantic theory and
computational linguistics. It implies that the ambiguities of natural language are not the result of
careless speech by uneducated people. Instead, they result from the fundamental nature of language
and the way it relates to the world: each language uses and reuses a finite number of words to
represent an unlimited number of topics. A closed semantic basis along classical lines is not possible
for any natural language. Instead of assigning a single meaning or even a fixed set of meanings to
each word, a theory of semantics must permit an open-ended number of meanings:

• Words are like playing pieces that may be used and reused in different language games.

• Associated with each word is a limited number of lexical patterns that are common to all the
language games that use the word.

• Meanings are deeper conceptual patterns that change from one language game to another.

• Metaphor and conceptual refinement are techniques for transferring the lexical patterns of a
word to a new language game and thereby creating new conceptual patterns for that game.

Once a lexical pattern is established for a concrete domain, it can be transferred by metaphor to create
similar patterns in more abstract domains. By this process, an initial set of lexical patterns can be built
up; later, they can be generalized and extended to form new conceptual patterns for more abstract
subjects. The possibility of transferring patterns from one domain to another increases flexibility, but it
leads to an inevitable increase in ambiguity.

If the world were simpler, less varied, and less changeable, natural languages might be unambiguous.
But the complexity of the world causes the meanings of words to shift subtly from one domain to the
next. If a word is used in widely different domains, its multiple meanings may have little or nothing
in common. As an example, the word invest, which originally meant to put on clothing, has come to
mean either to surround a fortress or to make a certain kind of financial transaction. In Italian, the
related word investmento has all the senses of the English investment, but with the added sense of
traffic accident. As these examples illustrate, the mechanisms of natural languages not only permit,
but actually facilitate arbitrarily large shifts in meaning. They have enabled isolated tribes using stone-
age tools to adapt to 21st-century cultures within the lifetime of a single generation, while continuing
to speak what is called “the same language.”

Although Wittgenstein’s theory of language games has been highly influential, some linguists and
philosophers have raised criticisms and proposed alternative, but related hypotheses. Hattiangadi
(1987) proposed that the meaning of a word is the set of all possible theories in which it may be used,
but that term sounds too formal to cover everyday speech. Kittredge and Lehrberger (1982) used the
term sublanguage for any specialized language used in any context for any purpose. Whatever it’s
called, a language game or any related variation must involve an organized system of language patterns
and practices that are intimately bound to a system of behavior — or, as Wittgenstein called it, a way
of life. Language can only be understood in terms of the social activities of its speakers. Full
understanding of the language would require a person or robot to participate in the activity in a way
that other participants would consider appropriate. This requirement, which is a variant of the Turing
test, is a necessary condition for a single language game. A sufficient condition for general under-
standing would require the ability to learn, use, and invent a wide range of language games in the same
kinds of circumstances as native speakers.

By those criteria, the bonobo Kanzi is a nonhuman person who has reached a level of language
understanding that is beyond the ability of any computer system yet devised (Savage-Rumbaugh &
Lewin 1994). On a test of spoken English with sentences such as “Get the rubber band that’s in the
bathroom,” Kanzi responded with the correct action to 72% of the sentences; Alia, a two-year-old girl,
responded correctly to 66% of them. Even more impressive are the reports by Stuart Shanker, a
skeptical Wittgensteinian philosopher who became a believer after visiting Kanzi and his teacher, Sue
Savage-Rumbaugh. On Shanker’s first visit, Sue asked Kanzi, “I’m going to take Stuart around the lab.
Could you please water the tomato plants for me while we’re doing this?” Following is Shanker’s
description of what Kanzi did:

And sure enough, I watched as he trundled over to an outdoor water faucet, picked up a
bucket that was lying beside it, turned on the spigot and filled the bucket, turned off the
faucet himself, and then walked down to a vegetable patch at the far end of the compound,
carrying the bucket in one hand. When he reached the vegetables, I watched as he poured
the water on a small patch of tomato plants growing in the corner of the vegetable patch.
(Greenspan & Shanker 2004:107).

There is no evidence of which words of the request Kanzi understood. But he was undoubtedly familiar
with the task of watering the tomatoes, and he understood the language games related to that task.
Linguists have claimed that the inability to produce detailed syntax indicates that apes have not learned
a truly natural language. Yet apes and two-year-old children satisfy the criteria of learning, using, and
inventing language games integrated with their behavior. If Kanzi were human, he would be diagnosed
as having a language deficit, but no one would doubt his understanding of the language associated with
the activities in which he participated.

Current natural language processors have been used in many valuable applications, such as translating
languages, finding and extracting information from text, summarizing texts, answering questions, and
checking and correcting syntax errors. Some of them have been used to control robots, but none of
them have been able to learn, play, and invent language games at the level of Kanzi and other apes.
Furthermore, none of them have been able to learn, use, and generate language at the level of a three-
year-old child. The following sentences were uttered by a child named Laura at 2 years, 10 months
(Limber 1973):

Here’s a seat. It must be mine if it’s a little one.

I went to the aquarium and saw the fish.

I want this doll because she’s big.

When I was a little girl, I could go “geek geek” like that,
but now I can go “This is a chair.”

Forty years ago, the goal of AI was to meet or exceed all human intellectual abilities. Today, reaching
the level of Laura or Kanzi would be a major achievement.

Laura’s sentences contain implications (if), causal connections (because), modal auxiliaries (can and
must), contrast between past and present tenses, metalanguage about her own language at different
times, and parallel stylistic structure. Combining modal, temporal, causal, and metalevel logic and
reasoning in a single formalism and using it to interpret and generate natural language is still a major
research topic. Even though she couldn’t prove theorems as fast as Wang’s program, Laura used all
those operators before the age of three. The assumption that formal logic is the foundation or
prerequisite for language understanding seems unlikely.

Some linguists and philosophers have been searching for an elusive “natural logic” that underlies
language. Yet there is no sharp boundary between ordinary language and any formal logic. When two
logicians talk on the telephone, they can convey the most abstruse ideas with a few words added to
ordinary language. A better assumption is that formal logic is a language game played with symbols
and patterns abstracted from natural languages. Formal logic may sound unnatural to the uninitiated,
but that is true of the language games of any specialized field. Sailors, plumbers, chefs, and computer
hackers scorn the “book learning” of novices who try to use their jargon without mastering the
associated skills. Book learning is useful, but computer systems must relate it to action in order to
demonstrate understanding at the level of Laura or Kanzi.

Some language games involve a disciplined use of syntax, semantics, and vocabulary in a controlled
natural language that a computer can process without full understanding. An example is the METEO
system for translating weather reports to and from English and French (Thouin 1982). For routine
reports about the temperature and precipitation, METEO does the translation without human assistance,
but for unusual conditions outside the controlled subset, it sends the reports to a human translator.
Speech recognition systems for handling telephone calls frustrate people who need to discuss situations
that fall outside the controlled subset. More research is necessary to broaden the controlled subsets and
determine when to transfer the call to a human being.

5. Society of Mind
In computer systems, the linear flow of Figure 1 is easy to implement: each stage analyzes some data,
passes the results to the next stage, and never sees the same data again. But the more complex
interconnections of Figure 2 allow other modules, even later stages, to request or propose different
interpretations of previously analyzed data. In recordings of the following sentences, for example,
Warren (1970) spliced a patch of white noise at each point marked ¿:

The ¿eel is on the shoe.

The ¿eel is on the car.

The ¿eel is on the table.

The ¿eel is on the orange.

Although the sound was identical in each of the four sentences, the listeners who heard the recordings
interpreted the four words as heel, wheel, meal, and peel, respectively. Apparently, feedback from the
semantic stage caused a reinterpretation of the phonology of an earlier word in the sentence.
Furthermore, the listeners were not aware of hearing anything unusual. Many similar studies indicate

a great deal of parallel processing in the brain with feedback from later stages to earlier stages, usually
at a level beneath conscious awareness. To support parallel processing with feedback, a computer
system would require a more complicated control structure than a linear flow.

An early AI model of parallel reasoning was Pandemonium (Selfridge 1959), which consisted of a
collection of autonomous agents called demons. Each demon could observe aspects of the current
situation or workspace, perform some computation, and put its results back into the workspace. In
effect, Pandemonium was a parallel forward-chaining reasoner, whose major drawback was that the
demons generated large volumes of mostly useless data that overflowed available storage. For a more
disciplined method of passing messages among the linguistic modules, Hahn et al. (1994) designed
ParseTalk as a distributed, concurrent, object-oriented parser. In discussing its advantages, the authors
noted that ParseTalk replaces “the static global-control paradigm” of Figure 1 with “a dynamic, local-
control model” that supports “a balanced treatment of both declarative and procedural constructs within
a single formal framework.” Although ParseTalk is a promising approach, Figure 3 suggests that the
language modules use a much older and more pervasive system that supports all aspects of perception,
cognition, and action. Therefore, the large box at the bottom of Figure 3 should also be subdivided in
modules that operate in parallel and communicate by message passing.

The integration of language games with social activity implies that the language modules should be
further subdivided and interconnected with other cognitive modules in dynamically changing ways.
The modules for reading, for example, would connect visual perception to the syntactic and semantic
mechanisms. Psycholinguistic studies with Japanese syllabic kana symbols and character-based kanji,
indicates that they use different neural mechanisms even for reading. Singing integrates language and
music in ways that make both the words and the melodies easier to recognize and reproduce. Singing is
also connected to dancing, marching, and various kinds of rhythmic work and play. Some linguists
claimed that music was based on the syntactic mechanisms of language, but Mithen (2006) presented
detailed evidence to show that music is older and independent of language. In fact, syntax may have
evolved with or from the music of prosody. Whatever the basis, the number of modules is probably far
greater than the eight boxes of Figures 2 and 3. Perhaps there is no limit to the number of modules, and
every language game and mode of behavior has its own module or even a collection of interacting
modules.

The diversity of mechanisms associated with language is a subset of the even greater diversity involved
in all aspects of cognition. In his book The Society of Mind, Minsky (1987) surveyed that diversity and
proposed an organization of active agents as a computational model that could simulate the complexity:

What magical trick makes us intelligent? The trick is that there is no trick. The power of
intelligence stems from our vast diversity, not from any single, perfect principle. Our species
has evolved many effective although imperfect methods, and each of us individually
develops more on our own. Eventually, very few of our actions and decisions come to
depend on any single mechanism. Instead, they emerge from conflicts and negotiations
among societies of processes that constantly challenge one another. (Section 30.8)

This view is radically different from the assumption of a unified formal logic that cannot tolerate a
single inconsistency. Unlike the ParseTalk goal of “a single formal framework,” Minsky’s goal is to
build a flexible, fault-tolerant system out of imperfect, possibly fallible components. Such a system can
support logic, just as the flexible, fault tolerant, and fallible human brain supports logic. More recently,
Minsky (2006) emphasized the role of emotions in driving an engine composed of multiple agents.
Without emotions to set the goals, a logic-based theorem prover would have no reason to do anything.

Minsky’s proposal for a society of interacting agents could be implemented in a variety of ways. The
Flexible Modular Framework™ (FMF) proposed by Sowa (2002, 2004) is an architecture for

intelligent systems that was inspired by Minsky’s society of agents, by McCarthy’s proposal for the
logic-based language Elephant 2000, and by Peirce’s semeiotic. As in Minsky’s society, each module
in the FMF is an autonomous agent that communicates with other agents by passing messages. As in
McCarthy’s Elephant, each message specifies a speech act that indicates its purpose, and the messages
may be expressed in logic. As in Peirce’s semeiotic, each message is a sign at any level of complexity,
each agent is a “quasi-mind” that interprets signs by generating other signs, and many agents use the
Peirce-inspired system of logic called conceptual graphs. An agent that knows another agent’s identity
can send it a message directly, but any agent can post a message to a Linda blackboard, and any other
agent that can process that type of message can respond to it (Gelernter 1985). Unlike ParseTalk, the
FMF does not require a single formal framework, but it can support the π-calculus, which is a
generalization of Petri nets that allows new agents and communication paths to be created or destroyed
dynamically (Milner 1999). Several variations of the FMF have been implemented, and all of them use
a lightweight protocol that can be implemented in 8K bytes per agent. Thousands of agents can run
simultaneously on a laptop computer, but they can communicate with other agents anywhere across the
Internet.

An interactive system of agents that can change their configuration dynamically is strictly more
expressive than a conventional Turing machine, and it can compute functions that are not Turing
computable (Eberbach et al. 2004). The π-calculus is one such system. Another is the $-calculus,
which has the same operators as the π-calculus, but adds a cost measure for each computation. A
cost measure based on space and time requirements can constrain the excesses of systems like
Pandemonium by rewarding agents that produce good results with more resources and reducing the
resources of agents that produce useless data.

At VivoMind, the authors have developed a learning method called Market-Driven Learning (MDL),
which uses a version of $-calculus. The basic idea is that the system of agents is organized in a
managerial hierarchy with one agent called the CEO at the top. The CEO is responsible for producing
results that earn rewards, measured in units of space and time, in order to keep the society of agents in
business. At the bottom of the hierarchy are agents that find data, combine data, or propose hypotheses.
Some of them are freelance agents who sell data or hypotheses by advertising them on the Linda
blackboards. Other agents are hired by some agent that serves as a manager. Each manager has one or
more agents as employees, and every manager except the CEO is allocated resources by a higher-level
manager. The managers can use their resources to hire employees, reward employees for good
performance, or buy data and hypotheses from freelance agents or from other managers. The managers
may combine the data and hypotheses themselves, assign their employees the task of doing the
combination, or serve on a committee with other managers to produce a combined report.

The MDL society learns by reorganizing itself to produce consistently good results, which humans are
willing to buy. The rewards pass through the hierarchy from manager to employee and create an effect
of backward propagation similar to the learning methods of a neural network. But unlike the simple
switches and numeric functions of a neural network, the MDL agents can be arbitrarily complex
programs or reasoning systems, they can hire or fire other agents, and the messages can be propositions
or even large documents stated in some version of logic. Also unlike a neural network, the messages
that pass through the MDL can be translated to Common Logic Controlled English (CLCE) in order
to provide humanly readable explanations about the way any agent derived its data, hypotheses, or
reports. By simulating a variety of business methods, the MDL approach has produced good results,
and it is used in the VivoMind Language Processor described in Section 7.

6. Experience with Intellitex and CLCE
The theoretical issues discussed in the previous sections influenced the design of two language
processors developed and used by the authors: the Intellitex parser, which produced an approximate
translation from English to conceptual graphs, and the CLCE parser, which translated the formally
defined subset of Common Logic Controlled English to precisely defined conceptual graphs. The
two parsers had complementary strengths and weaknesses:

• Intellitex was a fast, but shallow parser that used a version of link grammar (Sleator &
Temberley 1993) to translate English sentences to conceptual graphs. Intellitex always
generated some conceptual graph as an approximation to the semantics of an English sentence,
but its grammar and semantics were not sufficiently detailed to generate an accurate logical
form for complex sentences. Its approximations, however, were useful for many applications,
such as analogical reasoning and question answering (Sowa & Majumdar 2003). The VivoMind
Analogy Engine (VAE) could enhance and correct the approximate CGs generated by Intellitex,
but only if a large knowledge base of precisely defined CGs happened to be available. For an
important application, such knowledge enabled Intellitex to perform amazingly well.

• The CLCE parser was a traditional syntax-directed parser, which processed character strings
written in Common Logic Controlled English (Sowa 2004). It followed the stages from
morphology to semantics in Figure 1 to generate a logical form in the Conceptual Graph
Interchange Format (CGIF), as defined by the ISO/IEC 24707 standard for Common Logic.
But the CLCE subset of English is a formal language, and the CLCE parser was as rigid and
unforgiving as a parser for any formal language. Making it more user friendly or extending it
to a broader range of English constructions would require a large number of grammar rules.
Furthermore, each grammar rule would require a corresponding semantic rule to generate the
correct CG.

Over time, incremental improvements were made to both of these processors, but their methods for
parsing English and generating CGs were so different that no synergism between them was possible.
Intellitex was more robust and forgiving than the CLCE parser, but it could not detect and correct errors
in the input that would cause the CLCE parser to fail. The CLCE parser generated precise CGs, but it
could not improve the output generated by Intellitex. A survey of these two systems can provide some
insight into the issues.

The largest and most impressive application combined Intellitex with VAE for a legacy reengineering
project that analyzed and related the software and English documentation for a large corporation. The
software was written in formal languages: 1.5 million lines of COBOL with embedded SQL statements
and several hundred scripts in the IBM Job Control Language (JCL). The documentation consisted of
100 megabytes of English reports, manuals, e-mails, web pages, memos, notes, and comments in the
COBOL and JCL code. Some of the documentation and programs were up to 40 years old and still in
daily use.

The first goal was to analyze the programs to derive a data dictionary, data flow diagrams, process
architecture diagrams, and system context diagrams for all the software. That task could be done with
programming-language parsers and conventional methods of analysis. The second and more
challenging goal was to analyze the English, detect any errors or discrepancies between the software
and the documentation, and generate a humanly readable glossary of terminology for the software and
data, including all the variations over the period of 40 years. A major consulting firm estimated that
analyzing all the documentation and relating it to the software would require 40 people for 2 years.

By using Intellitex and VAE, two programmers, Arun Majumdar and André LeClerc, accomplished
both goals in less than two months, a total of 15 person weeks instead of 80 person years (LeClerc &
Majumdar 2002). The results of first analyzing the computer languages and translating them to
conceptual graphs were essential for analyzing the English. The names of every program, file, and
data element were added to the dictionary used for parsing English. Furthermore, those items were
also classified in an ontology of the computer terms that supplemented the ontology derived from
WordNet, CoreLex, and other resources. Each term added to the lexicon was associated with one or
more conceptual graphs that showed the expected relations: for example, variables occur in programs,
programs process files, and files contain data. When parsing English, Intellitex translated every phrase
or sentence to a conceptual graph. Those CGs that did not refer to anything in the software were
discarded, and the others were used to update a knowledge base of information about the software.
The results of the analysis were presented in one CD-ROM: software diagrams, data dictionary,
English glossary, and a list of inconsistencies between the software and the documentation.

The reason why Intellitex and VAE succeeded where many natural language processors failed is that it
did not attempt to translate informal language to formal logic. Instead, it used the formal CGs derived
from COBOL, SQL, and JCL as the background knowledge for interpreting English text and resolving
ambiguities. In short, the results were generated by joining formal CGs according to formal rules in
order to create a pattern that had a close match to the approximate CGs derived from the English
sentences. As an example, the following paragraph is taken from the English documentation:

The input file that is used to create this piece of the Billing Interface for the General Ledger
is an extract from the 61 byte file that is created by the COBOL program BILLCRUA in
the Billing History production run. This file is used instead of the history file for time
efficiency. This file contains the billing transaction codes (types of records) that are to be
interfaced to General Ledger for the given month. For this process the following
transaction codes are used: 32 — loss on unbilled, 72 — gain on uncollected, and 85 —
loss on uncollected. Any of these records that are actually taxes are bypassed. Only client
types 01 — Mar, 05 — Internal Non/Billable, 06 — Internal Billable, and 08 — BAS are
selected. This is determined by a GETBDATA call to the client file. The unit that the gain
or loss is assigned to is supplied at the time of its creation in EBT.

The common words in this paragraph were found in the dictionary derived from WordNet. Other words
such as BILLCRUA, GETBDATA, and EBT were derived from the previous analysis of the software.
Those words caused VAE to bring associated CGs from the background knowledge.

The sample paragraph also illustrates how Intellitex can process a wide range of syntactic constructions
with a rather simple grammar. A phrase such as “32 — loss on unbilled” is not part of any published
grammar of English. When Intellitex found that pattern, it translated it to a rudimentary conceptual
graph of the following form:

[Number: 32]→(Next)→[Punctuation: "—"]→(Next)→[Loss]→(On)→[Unbilled]
This graph was stored as a tentative interpretation with a low weight of evidence. But Intellitex found
two more graphs, which VAE matched to this graph with a high weight of evidence. Therefore, this
syntactic pattern became, in effect, a newly learned grammar rule with a familiar semantic pattern.
Although that pattern is not common in the full English language, it is important for the analysis of at
least one document. The uninformative relations labeled Next were supplemented with background
knowledge derived from previously analyzed CGs that formed the best match to those rudimentary
graphs.

This discussion illustrates one of the most important lessons learned from Intellitex and VAE: A formal
representation is easier to derive by joining conceptual graphs from background knowledge than by

limiting the analysis to the details found in the input sentences. In fact, the background knowledge can
often correct typos and other careless mistakes in the input text. That process illustrates Peirce’s point
that the listener may derive “a more developed sign” than the speaker intended. It is colloquially called
“reading between the lines.” This principle was applied in another application of Intellitex for scoring
and correcting student answers to examination questions. Instead of trying to understand every detail of
the students’ often cryptic and ungrammatical prose, VAE would match the approximate CGs derived
from the student answers to previously derived CGs that were known to be correct or incorrect. The
results had a high correlation with the scores assigned by experienced teachers.

For applications that require a precise representation in logic, a syntax-directed parser was used to
translate CLCE to logic. Following is an example of medical English, as written by a physician:

Exclude patients with a history of Asthma, COPD3, Hypotension, Bradycardia (heart
block > 1st degree or sinus bradycardia) or prescription of inhaled corticosteroids.

No system available today can accurately translate this kind of language to any version of logic. But
a person with medical expertise and some training in writing controlled English can learn to translate
this text to the following CLCE statements:

Define "x is bradycardia" as "either x is sinus bradycardia or (x is a heart block and x has a
degree greater than 1)".

If a patient x has a history of asthma, or x has a history of COPD3, or x has a history
of hypotension, or x has a history of bradycardia, or (x is prescribed a drug y, and y is
inhaled, and y is a corticosteroid), then x is excluded.

Although these statements can be read as if they were English, CLCE is actually a formal language that
has a direct mapping to first-order logic. For somebody who knows the subject matter, reading CLCE
requires little or no training. Learning to write CLCE, however, requires training, especially for people
who have never taken a course in logic.

To make CLCE more “user friendly,” additional grammar rules were added to catch typical errors and
to introduce more natural ways of expressing various logical combinations. But as we continued to add
rules and inferences, we ran into maintenance problems and interactions between the inferences that
resulted in confusing, but consistent readings. Since we were already implementing a new parser to
replace Intellitex, we decided to design the new parser to handle CLCE as one kind of language game
that could be played with English. The new parser would translate CLCE sentences directly to logic.
But instead of rejecting sentences outside the CLCE subset, it would use the methods designed to
handle unrestricted English. Then it would translate any CG that was generated back to CLCE as an
echo and ask for a confirmation of its accuracy. In effect, CLCE was no longer defined as the language
accepted by the parser, but as the language generated as an echo.

7. Designing Robust and Flexible Systems
A computer system that truly understands language would have to address all the issues discussed in
this article, perhaps with others that are still unknown. Following is a brief summary:

1. Language learning, by the individual or the species, is grounded in social interactions, and full
language understanding must be integrated with social behavior and all the supporting
mechanisms of perception, action, knowledge, and reasoning.

2. Wittgenstein was correct in rejecting his early view, as influenced by his mentors Frege and
Russell, that logic is the foundation for language. As he said in his notebooks (Zettel), language

is “an extension of primitive behavior. (For our language game is behavior.)”

3. Instead of being the foundation for language, logic is one among many important games that
can be played with the words and syntax of a natural language. Formal logic is an abstraction
from those language games, not a prerequisite for them.

4. The elegant syntax of well-edited prose is another important language game, which is used in
large libraries of valuable knowledge. But focusing on that game as the prototype of “language
competence” is as misguided as privileging any other language game, such as poetry, prayer,
casual gossip, technical jargon, or text messaging.

5. Syntactic parsers can be useful for many practical applications, but a rigid linkage of syntactic
rules to semantic rules is too inflexible and fragile to support natural languages. The appropriate
semantics cannot be determined without knowledge of the context and subject matter.

6. The information needed to understand a sentence can rarely be derived from just its words and
syntax. Even when the syntax is unambiguous, background knowledge of the context and
subject matter must be added to determine the referents, the exact word senses, and the
speaker’s intentions.

The new VivoMind Language Processor (VLP) is a modular, open-ended system designed to
accommodate the features discussed in this article and others that remain to be invented. The
processing is handled by a society of agents, which can dynamically reconfigure their interactions by
the market-driven learning methods described in Section 5. New features can be handled by adding
new agents to the society, and a failure of one or more agents causes a fail-soft degradation in
capability, rather than a hard crash. The syntactic component of VLP generates conceptual graphs as
dependency structures by techniques similar to a link-grammar parser (Sleator & Temperley 1993), but
with an approach that is similar to the parallel and concurrent ParseTalk (Hahn et al. 1994). Instead of
the object-oriented methods of ParseTalk, in which the calling program determines how an object is
supposed to respond, the VLP agents have more freedom to make their own decisions. Many of the
decisions use a consensus-based approach that combines the results of several agents.

The first major application of VLP was to analyze 79 documents in the geosciences domain. The
articles, which ranged in size from 1 to 50 pages, described various sites of interest for oil and gas
exploration. The documents were not tagged or annotated in any way, except for the usual formatting
tags intended for human readability. The VLP system translated the texts to conceptual graphs, used
the new Cognitive Memory system to index and store the graphs, and searched for analogies among the
graphs that described various sites. When two sites were found to be similar, the system would state in
English which aspects of one site corresponded to which aspects of the other site. A domain expert
who examined the output found these side-by-side comparisons to be especially informative and useful.

Several different resources were used to provide lexical knowledge, but no attempt was made to merge
all the information in a single lexicon. Such a merger was rejected for several reasons. First, many
resources, such as WordNet, CoreLex, and Roget’s Thesaurus, are so different in kind, in level of
coverage, and in organization that the merger would be difficult to do and difficult to undo, if one
resource or the other were inappropriate for a particular application or even a particular sentence.
Second, resources are revised and updated at different times, and frequent updates to a large, merged
resource would be inconvenient and error prone. Third, there is no need to merge the resources in
advance, since the society of agents makes it easy to assign one agent to each resource, and that agent
can contribute any relevant information from its resource whenever it seems useful. Finally, nobody
knows what resources may become available for special domains and purposes, and keeping different
ontologies in separate modules maximizes the options and flexibility. A voting mechanism among the
agents enables them to accept or reject any contribution, depending on the current task and context.

To illustrate the operations of the agents, the following sentence was taken from one of the geoscience
articles (Sullivan et al. 2005):

The Diana field is situated in the western Gulf of Mexico 260 km (160 mi) south of
Galveston in approximately 1430 m (4700 ft) of water.

In the first stage, agents for the lexical resources contribute information about the part of speech of
each word, its associated concept type, and various formats for measures and other typical qualifiers.
Any conflicts among the agents are resolved by voting. The result is

entity(1, "Diana field") prep("in the") loc(1, western) loc(2, "Gulf of Mexico") measure(1,
"260 kilometers") measure(2, "160 miles") loc(3,south) prep("of") loc(4,"Galveston")
prep("in") qualifier(approximately) measure(3,"1430 meters") measure(4,"4700 feet")
prep("of") entity(2, water).

Lexical information, context, heuristics, and domain knowledge contribute to the interpretation. Low-
level morphology expands “ft” to “feet”. Unknown words or word groups, such as “Diana field” are
assumed to be geophysical entities because they are not in the basic lexicons. Agents with knowledge
of the geoscience domain would determine that Diana field is a reservoir and add the information
entity([1],reservoir). In geoscience, a reservoir is made up of special kinds of rocks that trap natural
gases or oils. More detailed domain knowledge, used for interpreting the semantics and pragmatics of
a text, can be stated in scenarios, which represent aspects of Wittgensteinian language games. Those
scenarios, which domain experts can write in CLCE, can explain how a reservoir is created geolo-
gically or how it is evaluated for business purposes — two different, but related language games
played by different employees of the same company.

Detecting the purpose of parenthesized expressions is usually difficult or impossible by syntactic
methods, and the semantic conventions tend to be highly idiosyncratic and ad hoc. The initial analysis,
as shown above, lists measure(1, "260 kilometers") and measure(2, "160 miles") in the sequence in
which they occurred. One of the agents detected that the two measures were approximately equal, but
stated in different units. Therefore, it made an abductive inference that the parenthesized expression
was intended to express equality, and it added the information equals([1,2], measure). To determine the
attachment of prepositional phrases and other modifiers, VLP creates an intermediate structure with
multiple links as tentative hypotheses. For this sentence, the syntax is sufficient to determine that Diana
field must be in the western part of the Gulf of Mexico, but other attachments are syntactically
ambiguous. To prune away unlikely options, some agents use a domain ontology for geoscience, which
includes information about reservoirs, bodies of water, and cities. After pruning, the remaining links
indicate that Diana field is south of Galveston and in the water.

The protocol for interactions among VLP agents is a subset of the FMF, implemented in an extended
version of Prolog called PrologIKS. Since all messages are expressed in the same Prolog-like notation,
one of the FMF features that is not required by VLP is the option of supporting multiple languages.
Most of the inferences are performed directly with Prolog rules. Domain-dependent rules, written in
CLCE by domain experts, can be translated to Prolog for use by VLP agents. The agents that apply
domain knowledge use exactly the same protocols as the agents that implement the morphology, the
grammar, the lexical knowledge, and the multiple ontologies. When conflicts arise, the voting
mechanisms can accept inputs from all those agents to resolve ambiguities and choose alternative
interpretations. The MDL learning mechanisms can shift the influence of various agents by shifting
the amount of resources allocated to them. If an agent’s contribution leads to a successful parse and
interpretation of a sentence, it is rewarded with more resources. When analyzing different genres,
documents, or even paragraphs, MDL methods can dynamically adjust the influence of different agents.

The VLP parser is still in an early stage of development, but it has produced some useful results. The
market-driven learning methods have proved to be successful on another project, but they haven’t yet
been extensively tested on VLP. The semantic distance measures of the old VAE were highly efficient
for analogy finding, and variations were applied to knowledge capture (Majumdar et al. 2007). More
research and testing is necessary, but the new VLP already appears to be more robust, scalable, and
accurate than the old Intellitex.

References
Deacon, Terrence W. (1997) The Symbolic Species: The Co-evolution of Language and the Brain, W.
W. Norton, New York.

Delavenay, Emile (1960) An introduction to machine translation, Thames & Hudson, London.

Eberbach, Eugene, Dina Goldin, & Peter Wegner (2004) “Turing’s Ideas and Models of Computation,”
in C. Teuscher, ed., Alan Turing: Life and Legacy of a Great Thinker, Springer, Berlin.

Frege, Gottlob (1879) Begriffsschrift, English translation in J. van Heijenoort, ed. (1967) From Frege
to Gödel, Harvard University Press, Cambridge, MA, pp. 1-82.

Gelernter, David (1985) “Generative communication in Linda,” ACM Transactions on Programming
Languages and Systems, pp. 80-112.

Good, Irving John (1965) “Speculations concerning the first ultraintelligent machine” in F. L. Alt & M.
Rubinoff, eds., Advances in Computers 6, Academic Press, New York, 31-88.

Greenspan, Stanley I., & Stuart G. Shanker (2004) The First Idea: How Symbols, Language, and
Intelligence Evolved from Our Primate Ancestors to Modern Humans, Da Capo Press, Cambridge, MA.

Hahn, Udo, Susanne Schacht, & Norbert Broker (1994) “Concurrent Natural Language Parsing: The
ParseTalk Model,” International Journal of Human-Computer Studies 41, 179-222.

Hattiangadi, Jagdish N. (1987) How is Language Possible? Philosophical Reflections on the Evolution
of Language and Knowledge, Open Court, La Salle, IL.

ISO/IEC (2007) Common Logic (CL) — A Framework for a family of Logic-Based Languages, IS
24707, International Organisation for Standardisation.

Kamp, Hans (2001) “Levels of linguistic meaning and the logic of natural language,”
http://www.illc.uva.nl/lia/farewell_kamp.html

Kittredge, Richard, & John Lehrberger, eds. (1982) Sublanguage: Studies of Language in Restricted
Semantic Domains, de Gruyter, New York.

LeClerc, André, & Arun Majumdar (2002) “Legacy revaluation and the making of LegacyWorks,”
Enterprise Architecture 5:9, Cutter Consortium, Arlington, MA.

Limber, John (1973) “The genesis of complex sentences,” in T. Moore, ed., Cognitive Development
and the Acquisition of Language, Academic Press, New York, 169-186.

Majumdar, Arun, Mary Keeler, John Sowa, & Paul Tarau (2007) “Semantic distances as knowledge
capture constraints,” Proc. First International Workshop on Knowledge Capture and Constraint
Programming.

Milner, Robin (1999) Communicating and Mobile Systems: the π calculus, Cambridge University
Press, Cambridge.

Minsky, Marvin (1987) The Society of Mind, Simon & Schuster, New York.

Minsky, Marvin (2006) The Emotion Machine: Commonsense Thinking, Artificial Intelligence, and the
Future of the Human Mind, Simon & Schuster, New York.

Mithen, Steven (2006) The Singing Neanderthals: The Origin of Music, Language, Mind, and Body,
Harvard University Press, Cambridge, MA.

Mohanty, J. N. (1982) Husserl and Frege, Indiana University Press, Bloomington.

Ogden, C. K., & I. A. Richards (1923) The Meaning of Meaning, Harcourt, Brace, and World, New
York, 8th edition 1946.

Peirce, Charles S. (1902) Logic, Considered as Semeiotic, MS L75, edited by Joseph Ransdell,
http://members.door.net/arisbe/menu/library/bycsp/l75/l75.htm

Peirce, Charles Sanders (1911) “Assurance through reasoning,” MS 670.

Peirce, Charles Sanders (CP) Collected Papers of C. S. Peirce, ed. by C. Hartshorne, P. Weiss, & A.
Burks, 8 vols., Harvard University Press, Cambridge, MA, 1931-1958.

Selfridge, Oliver G. (1959) “Pandemonium: A paradigm for learning,” in The Mechanization of
Thought Processes, NPL Symposium No. 10, Her Majesty’s Stationery Office, London, pp. 511-526.

Sleator, Daniel, & Davy Temperley (1993) “Parsing English with a Link Grammar,” Third
International Workshop on Parsing Technologies,
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/link/pub/www/papers/ps/LG-IWPT93.pdf

Sowa, John F. (2002) “Architectures for intelligent systems,” IBM Systems Journal 41:3, 331-349.

Sowa, John F. (2004) “Graphics and languages for the Flexible Modular Framework,” in K. E. Wolff,
H. D. Pfeiffer, & H. S. Delugach (2004) Conceptual Structures at Work, Proceedings of ICCS 2004,
LNAI 3127, Springer, Berlin, pp. 31-51.

Sowa, John F., & Arun K. Majumdar (2003) “Analogical reasoning,” in A. de Moor, W. Lex, & B.
Ganter, eds. (2003) Conceptual Structures for Knowledge Creation and Communication, LNAI 2746,
Springer, Berlin, pp. 16-36.

Sullivan, Morgan D., J. Lincoln Foreman, David C. Jennette, David Stern, Gerrick N. Jensen, Frank J.
Goulding (2005) “An Integrated Approach to Characterization and Modeling of Deep-water Reservoirs,
Diana Field, Western Gulf of Mexico,” Search and Discovery, Article #40153.

Thouin, B. (1982) “The METEO system,” in V. Lawson, ed., Practical Experience of Machine
Translation, North-Holland, Amsterdam, pp. 39-44.

Wang, Hao (1960) “Toward mechanical mathematics,” IBM Journal of Research and Development 4,
pp. 2-22. http://www.research.ibm.com/journal/rd/041/ibmrd0401B.pdf

Warren, R. M. (1970) “Restoration of missing speech sounds,” Science 167.

Wildgen, Wolfgang (1982) Catastrophe Theoretic Semantics: An Elaboration and Application of René
Thom’s Theory, John Benjamins Publishing Co., Amsterdam.

Wildgen, Wolfgang (1994) Process, Image, and Meaning: A Realistic Model of the Meaning of
Sentences and Narrative Texts, John Benjamins Publishing Co., Amsterdam.

Wittgenstein, Ludwig (1921) Tractatus Logico-Philosophicus, Routledge & Kegan Paul, London.

Wittgenstein, Ludwig (1953) Philosophical Investigations, Basil Blackwell, Oxford.

Wittgenstein, Ludwig (1970) Zettel, University of California Press, Berkeley.

	Pursuing the Goal of Language Understanding
	Arun Majumdar, John Sowa, John Stewart
	1. The Goal of Language Understanding
	2. Semeiotic and Biosemiotics
	3. Perception, Cognition, and Reasoning
	4. Language Games
	5. Society of Mind
	6. Experience with Intellitex and CLCE
	7. Designing Robust and Flexible Systems
	References

